Research Progress on Dolomite Improving Acidified Farmland Soil
-
摘要:
针对我国农田土壤酸化问题日益凸显的现状,本文系统阐述了白云石作为一种碱性碳酸盐矿物材料在土壤改良中的重要作用。通过深入剖析白云石的改良机制,研究发现其能够通过酸碱中和及沉淀作用显著提升土壤pH值,有效降低有毒重金属离子的活性,并改善土壤养分的有效性。此外,白云石还对土壤微生物群落结构产生了显著的正面影响,进一步促进了土壤生态系统的健康与平衡。值得关注的是,白云石的应用还显著降低了酸化土壤的温室气体排放强度,为农田生态系统的碳氮循环调控提供了新的思路。经济效益分析表明,白云石作为一种经济高效、环境友好的土壤改良剂,具有巨大的应用潜力和市场前景。未来研究可进一步探索白云石与其他改良剂的协同作用,以及在不同土壤类型和作物种植体系中的应用策略,以期为农业生产提供更为精准和高效的土壤改良解决方案。
Abstract:This article pertains to the field of agricultural science, with the focus on the application and effectiveness of dolomite in ameliorating acidified farmland soils. Addressing the increasingly prominent issue of soil acidification in Chinese farmlands, this study systematically elucidates the significant role played by dolomite, an alkaline carbonate mineral material, in soil improvement. Through a comprehensive analysis of dolomite's mechanisms for enhancement, the research findings demonstrate its ability to significantly increase soil pH value through acid-base neutralization and precipitation processes, effectively reduce toxic heavy metal ion activity, and enhance soil nutrient availability. Moreover, dolomite exerts a notable positive influence on the structure of soil microbial communities, thereby further promoting the health and balance of the soil ecosystem. Importantly, applying dolomite also leads to a substantial reduction in greenhouse gas emission intensity from acidified soils, offering a novel approach for regulating carbon and nitrogen cycles within farmland ecosystems. Economic benefit analysis indicates that as a cost-effective and environmentally friendly soil amendment option, dolomite holds tremendous potential for practical applications and market prospects. Future research can explore synergistic effects between dolomite and other soil amendments as well as develop application strategies tailored to different types of soils and cropping systems with an aim to provide more precise and efficient solutions for improving agricultural production.
-
Key words:
- Soil remediation /
- Dolomite /
- Acidified Soil /
- Crop Growth /
- Microbial Community /
- Economic Benefits
-
-
表 1 白云石对酸化农田土壤理化性质和植物生理生化的影响
Table 1. Effect of dolomite on physicochemical properties and plant physiology and biochemistry of acidified farmland soils
试验
设计土壤
类型作物类型 用量 用法 主要应用效果 参考文献Reference 土壤理化性质 植物生理生化 田间 白浆土 玉米 500 kg/hm2 整地前撒施 3年后土壤pH值提高7.8%~12.3% 促进干物质积累,3年平均产量提高10% [32] 盆栽 红壤 玉米 0.2%~0.4% 混拌均匀 土壤pH值提高0.12~0.62个单位,交换性铝和毒害性铝分别下降70.5%~92%和40.9%~52.6% 显著提高玉米地上部、地下部的干重、鲜重及地下部的根长和根直径 [33] 田间 黄壤 烤烟 0.2 kg/m2 基肥条施 土壤pH值提高31.4%,有机碳和速效磷含量分别增加7.63%、14.30%,硝态氮减少 株高和茎围等农艺性状明显改善,长势好 [27] 田间 黄壤 烤烟 2 001 kg/hm2 基肥条施 土壤pH值显著提高1.46个单位,有机碳含量明显增加7.63%,硝态氮含量显著降低54.97% 株高、茎围和叶长等农艺性状明显改善 [28] 田间 黄砂土 柑橘 2 kg/plant 开沟深翻
条施酸碱缓冲容量提升
0.06 cmol·kg-1·pH-1脐橙果实品质显著改善 [34] 田间 汞污
染土水稻 4 500 kg/hm2 撒施 土壤pH值提高1.56%,有效汞含量降低17.86% 水稻产量增加465 kg/hm2,稻米汞含量为0.010 mg/kg [35] 田间 水稻土 水稻 2 250 kg/hm2 撒施 土壤pH值平均提升0.2个单位,有机质含量平均提升4.8%,有效态镉含量降低54% 每穗实粒数、结实率和理论产量提高,稻米镉含量下降72% [36] 田间 红壤 三华李 900~
1 800 kg/hm2沿树冠滴水线挖环形施肥沟 土壤pH值提高0.03-0.42个单位,交换性镁含量提高0.06-0.88 mg/kg 每亩地产量提高192.90~363.60 kg,
未出现黄化缺镁症状[20] 田间 茶园
土壤茶树 300 kg/hm2 行间均匀
撒施连续两年施用后,土壤pH值平均提高0.94个单位,交换性钙镁离子含量显著提升 - [37] 田间 红壤 茶树 375~2 250 kg/hm2 撒施后旋耕深翻 0~20和20~40 cm土层土壤pH值最高可分别增加0.80和0.33个单位,0~20 cm土层土壤交换性H+和Al3+最多可减少40.13%和39.85% 茶叶中水浸出物、咖啡碱、茶多酚和氨基酸等品质状况显著改善,产量增加 [38] 田间 沙壤 百香果 3 000 kg/hm2 基肥撒施 土壤pH值提高0.47个单位, 旺果期,植株叶片未出现缺镁症状,果实正常,每亩增产111.2 kg [19] 盆栽 赤红壤 荔枝 2 g/kg 混拌均匀 土壤pH值显著提高1.65个单位;土壤碱解氮和速效钾含量显著降低;有效钙含量显著提高;土壤脲酶和酸性磷酸酶活性显著降低 荔枝的茎粗、叶片数增加,叶面积和生物量分别增加9.70%和31.09% [39] 田间 赤红壤 甘蔗 6 000 kg/hm2 种植前撒施 土壤pH值提高0.85个单位,土壤碱解氮、有效磷、速效钾、有效钙、有效镁的含量分别提高11.2、68.2、46.0、2156、775.2 mg/kg 甘蔗各部位养分含量提高,产量提高32.71 t/hm2,
产糖量提高7.27 t/hm2[40] 大棚 乌泥田 黄瓜 1 500 kg/hm2 随翻耕整地施用 土壤pH值提升0.46个单位。土壤有效Pb含量显著降低21.65% 黄瓜总Pb含量显著降低87.59% [41] 田间 黄红壤 第1-6季:小麦、红豆、油菜、玉米、油菜、黄豆 600~2 500 kg/hm2 第1季小麦播种前基施,此后
不施第1季小麦收获后,土壤pH值提升0.47-0.83个单位,交换性铝含量下降60.9%-92.8%,交换性钙和镁的含量分别较对照提高1~5倍。此降酸作用可维持3~6季作物以上 第1~6季作物分别增产10.8%~13.4%、21.5%~48.6%、9.4%~16.2%、10.9%~44.6%、7.9%~22.0%、6.6%~29.8% [42] 盆栽 砂土 菜豆 3 000 kg/hm2 混拌 土壤pH值显著升高0.46个单位;土壤净硝化量显著增加2.42 mg/kg;土壤透水性显著降低;脲酶、蔗糖酶和脱氢酶活性显著增加 - [24] 土培 老成土 - 1~2 g/kg 混拌 土壤pH值随白云石施用量的增加而增加,在第52天时达到最高值7.36 - [43] 苗圃 45%砂粒
49%粉粒
6%黏粒欧洲山毛榉、夏栎 2 200 kg/hm2 撒施 试验第一年,欧洲山毛榉和夏栎地块土壤pH值分别升高0.15、0.32个单位,第二年时分别升高0.30、0.38个单位;土壤酶活性总体上增强 两年内,欧洲山毛榉和夏栎中N、Mg、K、P平均含量增加,Mn含量显著降低 [44] 注:主要应用效果的数据是与未施用任何改良剂的对照处理进行比较得出的。 表 2 白云石对酸化农田土壤微生物活性的影响
Table 2. Effect of dolomite on microbial activity of acidified farmland soils
试验设计 土壤类型 作物 用量 用法 土壤微生物活性 参考文献 田间 黄壤 烤烟 0.2 kg/m2 基肥条施 细菌丰度增加37.1%;α多样性显著提高;细菌群落组成改变,尤以变形菌门相对丰度增幅最大 [27] 田间 黄壤 烤烟 2 001 kg/hm2 基肥条施 土壤固氮菌nifH基因丰度显著提高3.32倍;α多样性显著提高;固氮菌群落结构显著改变,其中放线菌门和蓝藻门相对丰度,以及慢生根瘤菌属相对丰度显著提高 [28] 3年田间定位 黄棕壤 烤烟 1 950 kg/hm2 翻耕前撒施 显著提高土壤细菌和放线菌数量,降低土壤真菌数量 [52] 盆栽 砂土 菜豆 3 000 kg/hm2 混拌 土壤细菌数量显著增加21.21%,而土壤真菌数量显著降低22.39% [24] 苗圃 砂壤 杉树 4 000 kg/hm2 撒施 微生物群落结构显著改变,担子菌门相对丰度提高1.7倍,成为优势类群,而被孢霉门相对丰富降低26% [53] 苗圃 冲积土 毛果杨 0.2% 大桶内与表土混匀 增加土壤渗滤液中耐铜菌比例,丰富了微生物群落,使蓝藻门、变形菌门和浮霉菌门等相对丰度显著增加 [54] 田间 水稻土 水稻 750 kg/hm2 - 土壤细菌和放线菌数量显著增加,但对真菌数量的增加效果不明显 [55] 田间 矿山周边废弃地 红麻 5% - 土壤微生物活性和多样性降低,对木糖、甘露醇、苹果酸等各种土壤碳源的利用能力减弱 [56] 注:主要应用效果的数据是与未施用任何改良剂的对照处理进行比较得出的。 -
[1] WEIL R R, BRADY N C. The Nature and Properties of Soils. 15th edition [M]. The Nature and Properties of Soils. 15th edition, 2017.
[2] WU Z, SUN X, SUN Y, et al. Soil acidification and factors controlling topsoil pH shift of cropland in central China from 2008 to 2018[J]. Geoderma, 2022, 408:115586. doi: 10.1016/j.geoderma.2021.115586
[3] 徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244.XU R K. Research progresses in soil acidification and its control[J]. Soil, 2015, 47(4): 238-244.
XU R K. Research progresses in soil acidification and its control[J]. Soil, 2015, 47(4): 238-244.
[4] ZHANG Y, YE C, SU Y, et al. Soil acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials[J]. Agriculture, Ecosystems & Environment, 2022, 340(1): 108176.
[5] 赵学强, 潘贤章, 马海艺, 等. 中国酸性土壤利用的科学问题与策略[J]. 土壤学报, 2023, 60(5):1248-1263.ZHAO X Q, PAN X Z, MA H Y, et al. Scientific issues and strategies of acid soil use in China[J]. Acta Pedologica Sinica, 2023, 60(5):1248-1263. doi: 10.11766/trxb202307250290
ZHAO X Q, PAN X Z, MA H Y, et al. Scientific issues and strategies of acid soil use in China[J]. Acta Pedologica Sinica, 2023, 60(5):1248-1263. doi: 10.11766/trxb202307250290
[6] 杨帆, 贾伟, 杨宁, 等. 近30年我国不同地区农田耕层土壤的pH变化特征[J]. 植物营养与肥料学报, 2023, 29(7):1213-1227.YANG F, JIA W, YANG N, et al. Spatio-temporal variation of surface soil pH of farmland in different regions of China in the past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(7):1213-1227. doi: 10.11674/zwyf.2022593
YANG F, JIA W, YANG N, et al. Spatio-temporal variation of surface soil pH of farmland in different regions of China in the past 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(7):1213-1227. doi: 10.11674/zwyf.2022593
[7] GOULDING K W T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom[J]. Soil Use and Management, 2016, 32(3):390-399. doi: 10.1111/sum.12270
[8] 吴道铭, 傅友强, 于智卫, 等. 我国南方红壤酸化和铝毒现状及防治[J]. 土壤, 2013, 45(4):577-584.WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south China and prevention[J]. Soil, 2013, 45(4):577-584.
WU D M, FU Y Q, YU Z W, et al. Status of red soil acidification and aluminum toxicity in south China and prevention[J]. Soil, 2013, 45(4):577-584.
[9] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(2):160-167.XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2):160-167.
XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2):160-167.
[10] LIU J X, CUI J, LIU H B, et al. Research progress of soil amelioration of acidified soil by soil amendments[J]. Journal of Environmental Engineering Technology, 2022, 12(1):173.
[11] BABLA M, KATWAL U, YONG M T, et al. Value-added products as soil conditioners for sustainable agriculture[J]. Resources, Conservation and Recycling, 2022, 178:106079.
[12] 黄武, 牟海燕, 梁煊, 等. 土壤酸化的防护与治理研究进展[J]. 四川化工, 2019, 22(5):9-13.HUANG W, MOU H Y, LIANG X, et al. Advances in soil acidification prevention and treatment[J]. Sichuan Chemical Industry, 2019, 22(5):9-13.
HUANG W, MOU H Y, LIANG X, et al. Advances in soil acidification prevention and treatment[J]. Sichuan Chemical Industry, 2019, 22(5):9-13.
[13] 张巍. 白云石的应用进展[J]. 矿产保护与利用, 2018(2):130-144.ZHANG W. Application progress of dolomite[J]. Conservation and Utilization of Mineral, 2018(2):130-144.
ZHANG W. Application progress of dolomite[J]. Conservation and Utilization of Mineral, 2018(2):130-144.
[14] 程良管, 卢寿慈, 张垂昌. 白云石资源综合利用的途径[J]. 矿产保护与利用, 1990(4):33-37+32.CHENG L G, LU S C, ZHANG C C. Ways to comprehensively utilize the resources of Baiyunshan[J]. Conservation and Utilization of Mineral Resources, 1990(4):33-37+32.
CHENG L G, LU S C, ZHANG C C. Ways to comprehensively utilize the resources of Baiyunshan[J]. Conservation and Utilization of Mineral Resources, 1990(4):33-37+32.
[15] SCHOLLE P A, ULMER-SCHOLLE D S. A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis [M]. American Association of Petroleum Geologists, 2003.
[16] 刘丽红, 韩淼, 田亚, 等. 白云岩矿特征、成因类型、分布及其开发利用价值[J/OL]. 中国地质, 1-25[2024-03-13]. https://kns.cnki.net/kcms2/detail/11.1167.P.20230704.0937.004.htmlLIU L H, HAN M, TIAN Y, et al. The characteristics, types, distributions and utilization value of dolomite deposit[J/OL]. Geology in China, 1-25[2024-03-13]. https://kns.cnki.net/kcms2/detail/11.1167.P.20230704.0937.004.html
LIU L H, HAN M, TIAN Y, et al. The characteristics, types, distributions and utilization value of dolomite deposit[J/OL]. Geology in China, 1-25[2024-03-13]. https://kns.cnki.net/kcms2/detail/11.1167.P.20230704.0937.004.html
[17] 班小淇, 顾畔, 印万忠, 等. 菱镁矿浮选体系中Fe3+对白云石的选择性活化及机理分析[J]. 矿产综合利用, 2022(5):125-129.BAN X Q, GU P, YIN W Z, et al. Study on reverse flotation process of magnesite and dolomite in dodecylamine system[J]. Multipurpose Utilization of Mineral Resources, 2022(5):125-129.
BAN X Q, GU P, YIN W Z, et al. Study on reverse flotation process of magnesite and dolomite in dodecylamine system[J]. Multipurpose Utilization of Mineral Resources, 2022(5):125-129.
[18] 王少阳, 祁欣, 罗旭东, 等. 白云石的应用进展[J]. 耐火材料, 2022, 56(1):88-92.WANG S Y, QI X, LUO X D, et al. Application progress of dolomite[J]. Refractories, 2022, 56(1):88-92. doi: 10.3969/j.issn.1001-1935.2022.01.019
WANG S Y, QI X, LUO X D, et al. Application progress of dolomite[J]. Refractories, 2022, 56(1):88-92. doi: 10.3969/j.issn.1001-1935.2022.01.019
[19] 朱宏生, 刘玉凡, 王晨. 百香果园施用白云石粉应用效果试验[J]. 农业科技通讯, 2021(6): 59-61.ZHU H S, LIU Y F, WANG C. Experiment on the application effect of dolomite powder applied to passion fruit orchards [J]. Bulletin of Agricultural Science and Technology, 2021, (6): 59-61.
ZHU H S, LIU Y F, WANG C. Experiment on the application effect of dolomite powder applied to passion fruit orchards [J]. Bulletin of Agricultural Science and Technology, 2021, (6): 59-61.
[20] 钟雄发. 三华李酸性土壤果园施用白云石粉效果探究[J]. 乡村科技, 2022, 13(4):61-63.ZHONG X F. Exploration on the effect of dolomite powder application in the orchard of Sanhua plum with acidic soil[J]. Rural Technology, 2022, 13(4):61-63. doi: 10.3969/j.issn.1674-7909.2022.04.021
ZHONG X F. Exploration on the effect of dolomite powder application in the orchard of Sanhua plum with acidic soil[J]. Rural Technology, 2022, 13(4):61-63. doi: 10.3969/j.issn.1674-7909.2022.04.021
[21] TRAKAL L, NEUBERG M, TLUSTOŠP, et al. Environment dolomite limestone application as a chemical immobilization of metal-contaminated soil[J]. Plant, Soil and Environment, 2011, 57(4):173-179. doi: 10.17221/408/2010-PSE
[22] 文星. 几种土壤改良剂对酸性水稻土及红壤旱土的改良效果研究[D]. 长沙: 中南大学, 2015.WEN X. Study the effects of several soil amendments on acid paddy soil and red soil[D]. Changsha: Central South University, 2015.
WEN X. Study the effects of several soil amendments on acid paddy soil and red soil[D]. Changsha: Central South University, 2015.
[23] 武际, 郭熙盛, 王文军, 等. 施用白云石粉对黄红壤酸度和油菜产量的影响[J]. 中国油料作物学报, 2006(1):55-58.WU J, GUO X S, WANG W J, et al. Effect of dolomite application on soil acidity and yield of rapeseed on yellow-red soil[J]. Chinese Journal of Oil Crop Sciences, 2006(1):55-58. doi: 10.3321/j.issn:1007-9084.2006.01.012
WU J, GUO X S, WANG W J, et al. Effect of dolomite application on soil acidity and yield of rapeseed on yellow-red soil[J]. Chinese Journal of Oil Crop Sciences, 2006(1):55-58. doi: 10.3321/j.issn:1007-9084.2006.01.012
[24] MAGDOLNA T, KOVÁCS A, OLÁH Z, et al. Dolomite and calcite treatments applying in melioration of an acidic sandy soil[J]. Natural Resources and Sustainable Development, 2019, 9:174-181.
[25] LUBIS K S, HANUM H, AULIA G. The effect of biofertilizer, chicken manure and dolomite on chemical soil and the growth of soybean at potential acid sulphate soils[J]. IOP Conference Series: Earth and Environmental Science, 2021, 782(4):042035.
[26] S D, NS R, SWADIGA O. Acidity and nutrient management practices for enhancing soil nutrient availability, nutrient uptake and grain yield of rice in Vaikom kari soils in Kuttanad, Kerala[J]. ORYZA- An International Journal on Rice, 2023, 60:426-441. doi: 10.35709/ory.2023.60.3.6
[27] 谭智勇, 王喜英, 赵辉, 等. 改良剂对酸性植烟土壤化学性质、细菌群落结构和丰度的影响[J]. 江苏农业科学, 2023, 51(16):240-246.TAN Z Y, WANG X Y, ZHAO H, et al. lmpacts of amendments on chemical properties and bacterial communitystructure and abundance in acid tobacco-planting soils[J]. Jiangsu Agricultural Sciences, 2023, 51(16):240-246.
TAN Z Y, WANG X Y, ZHAO H, et al. lmpacts of amendments on chemical properties and bacterial communitystructure and abundance in acid tobacco-planting soils[J]. Jiangsu Agricultural Sciences, 2023, 51(16):240-246.
[28] 赵辉, 王喜英, 谭智勇, 等. 改良剂对酸性植烟土壤固氮菌群落结构和丰度的影响[J]. 南方农业学报, 2022, 53(9):2435-2443.ZHAO H, WANG X Y, TAN Z Y, et al. Effects of amendment application on structure and abundance of nitrogen fixing microbial community in acidic tobacco-planting soil[J]. Journal of Southern Agriculture, 2022, 53(9):2435-2443. doi: 10.3969/j.issn.2095-1191.2022.09.006
ZHAO H, WANG X Y, TAN Z Y, et al. Effects of amendment application on structure and abundance of nitrogen fixing microbial community in acidic tobacco-planting soil[J]. Journal of Southern Agriculture, 2022, 53(9):2435-2443. doi: 10.3969/j.issn.2095-1191.2022.09.006
[29] JING Y D, HE Z L, YANG X E. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils[J]. Journal of Zhejiang University SCIENCE B, 2007, 8(3):192-207.
[30] HARTMANN M, SIX J. Soil structure and microbiome functions in agroecosystems[J]. Nature Reviews Earth & Environment, 2023, 4(1):4-18.
[31] 李丹, 王道泽, 赵玲玲, 等. 不同土壤改良剂对设施蔬菜土壤酸化的改良效果研究[J]. 中国农学通报, 2017, 33(27):112-116.LI D, WANG D Z, ZHAO L L, et al. lmprovement effects of different soil conditioners on acidity of greenhouse vegetable[J]. Chinese Agricultural Science Bulletin, 2017, 33(27):112-116. doi: 10.11924/j.issn.1000-6850.casb16080008
LI D, WANG D Z, ZHAO L L, et al. lmprovement effects of different soil conditioners on acidity of greenhouse vegetable[J]. Chinese Agricultural Science Bulletin, 2017, 33(27):112-116. doi: 10.11924/j.issn.1000-6850.casb16080008
[32] 孔丽丽, 侯云鹏, 都钧, 等. 不同酸土改良剂对玉米产量、干物质积累和土壤pH值的影响[J]. 东北农业科学, 2023, 48(5):1-5.KONG L L, HOU Y P, DU J, et al. Effects of different amendments of acidic soil on maize yield, dry matter accumulation and soil pH[J]. Journal of Northeast Agricultural Sciences, 2023, 48(5):1-5.
KONG L L, HOU Y P, DU J, et al. Effects of different amendments of acidic soil on maize yield, dry matter accumulation and soil pH[J]. Journal of Northeast Agricultural Sciences, 2023, 48(5):1-5.
[33] 李昂, 王旭, 范洪黎. 4种土壤调理剂改良红壤铝毒害的效果研究[J]. 中国土壤与肥料, 2014(4):7-11.LI ANG, WANG X, FAN H L. Effects of four soil conditioners on alleviating aluminum toxicity in acid red soil[J]. Soil and Fertilizer Sciences in China, 2014(4):7-11. doi: 10.11838/sfsc.20140402
LI ANG, WANG X, FAN H L. Effects of four soil conditioners on alleviating aluminum toxicity in acid red soil[J]. Soil and Fertilizer Sciences in China, 2014(4):7-11. doi: 10.11838/sfsc.20140402
[34] 曹胜, 曾斌, 龚碧涯, 等. 碱性物料与有机物料配施对柑橘园土壤酸碱缓冲性能和果实品质的影响[J]. 中国果树, 2023(1):57-63+71.CAO S, ZENG B, GONG B Y, et al. Effects of combined application of alkaline materials and organic materials onsoil acid-base buffering and fruit quality in citrus orchard[J]. China Fruits, 2023(1):57-63+71.
CAO S, ZENG B, GONG B Y, et al. Effects of combined application of alkaline materials and organic materials onsoil acid-base buffering and fruit quality in citrus orchard[J]. China Fruits, 2023(1):57-63+71.
[35] 余臻. 不同土壤改良剂对汞污染水稻-蔬菜轮作耕地安全利用效果的研究[J]. 农业与技术, 2022, 42(20):91-94.YU Z. Study on the effect of different soil conditioners on the safe utilization of mercury-contaminated rice-vegetable rotation cropland[J]. Agriculture and Technology, 2022, 42(20):91-94.
YU Z. Study on the effect of different soil conditioners on the safe utilization of mercury-contaminated rice-vegetable rotation cropland[J]. Agriculture and Technology, 2022, 42(20):91-94.
[36] 童文彬, 江建锋, 杨海峻, 等. 南方典型酸化土壤改良与水稻安全种植同步应用技术[J]. 浙江农业科学, 2022, 63(6):1154-1156+1160.TONG W B, JIANG J F, YANG H J, et al. Synchronization application of typical acidified soil improvement and saferice growth in South China[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(6):1154-1156+1160.
TONG W B, JIANG J F, YANG H J, et al. Synchronization application of typical acidified soil improvement and saferice growth in South China[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(6):1154-1156+1160.
[37] 杨文俪. 福建省安溪县茶园土壤酸化速率与改良技术[J]. 茶叶学报, 2021, 62(2):89-93.YANG W L. Remedy for soil acidification at tea plantations in Anxi, Fujian[J]. Acta Tea Sinica, 2021, 62(2):89-93. doi: 10.3969/j.issn.1007-4872.2021.02.009
YANG W L. Remedy for soil acidification at tea plantations in Anxi, Fujian[J]. Acta Tea Sinica, 2021, 62(2):89-93. doi: 10.3969/j.issn.1007-4872.2021.02.009
[38] 余跑兰, 孙永明, 李小飞, 等. 施用白云石粉对茶园土壤酸化及茶叶品质与产量的影响[J]. 茶叶通讯, 2020, 47(1):46-51.YU P L, SUN Y M, LI X F, et al. Effects of dolomite powder application on tea garden soil acidification, tea quality and yield[J]. Journal of Tea Communication, 2020, 47(1):46-51. doi: 10.3969/j.issn.1009-525X.2020.01.009
YU P L, SUN Y M, LI X F, et al. Effects of dolomite powder application on tea garden soil acidification, tea quality and yield[J]. Journal of Tea Communication, 2020, 47(1):46-51. doi: 10.3969/j.issn.1009-525X.2020.01.009
[39] 邱全敏, 王伟, 吴雪华, 等. 施用不同pH改良剂对荔枝园酸性土壤性质及荔枝生长的影响[J]. 热带作物学报, 2020, 41(2):217-224.QIU Q M, WANG W, WU X H, et al. Effects of soil pH conditioners on soil properties of acid litchi orchards and litchi growth[J]. Chinese Journal of Tropical Crops, 2020, 41(2):217-224. doi: 10.3969/j.issn.1000-2561.2020.02.002
QIU Q M, WANG W, WU X H, et al. Effects of soil pH conditioners on soil properties of acid litchi orchards and litchi growth[J]. Chinese Journal of Tropical Crops, 2020, 41(2):217-224. doi: 10.3969/j.issn.1000-2561.2020.02.002
[40] 单翔宇, 黄语娇, 谢如林, 等. 施用白云石粉对酸性土壤pH和有效养分及甘蔗生长的影响[J]. 广西农学报, 2019, 34(5):20-24+29.SHAN X Y, HUANG Y J, XIE R L, et al. Effects of applying dolomite powder on acid soil pH and available nutrientsas well as sugarcane growth[J]. Journal of Guangxi Agriculture, 2019, 34(5):20-24+29. doi: 10.3969/j.issn.1003-4374.2019.05.005
SHAN X Y, HUANG Y J, XIE R L, et al. Effects of applying dolomite powder on acid soil pH and available nutrientsas well as sugarcane growth[J]. Journal of Guangxi Agriculture, 2019, 34(5):20-24+29. doi: 10.3969/j.issn.1003-4374.2019.05.005
[41] 陈清海. 不同用量钝化剂对土壤及黄瓜Pb含量的影响[J]. 东南园艺, 2022, 10(4):266-270.CHEN Q H. Effect of different dosages of passivators on Pb content in soil and cucumber[J]. Southeast Horticulture, 2022, 10(4):266-270.
CHEN Q H. Effect of different dosages of passivators on Pb content in soil and cucumber[J]. Southeast Horticulture, 2022, 10(4):266-270.
[42] 王文军, 郭熙盛, 武际, 等. 施用白云石对酸性黄红壤作物产量及化学性质的影响[J]. 土壤通报, 2006(4):723-726.WANG W J, GUO X S, WU J, et al. Effects of applying dolomite on crop yield and soil chemical properties in acid yellow-red soils areas[J]. Chinese Journal of Soil Science, 2006(4):723-726. doi: 10.3321/j.issn:0564-3945.2006.04.023
WANG W J, GUO X S, WU J, et al. Effects of applying dolomite on crop yield and soil chemical properties in acid yellow-red soils areas[J]. Chinese Journal of Soil Science, 2006(4):723-726. doi: 10.3321/j.issn:0564-3945.2006.04.023
[43] SHAABAN M, PENG Q A, HU R, et al. Dolomite application to acidic soils: a promising option for mitigating N2O emissions[J]. Environmental Science and Pollution Research, 2015, 22(24):19961-19970.
[44] LASOTA J, KEMPF M, KEMPF P, et al. Effect of dolomite fertilization on nutritional status of seedlings and soil properties in forest nursery[J]. Soil science annual, 2021, 72(1):1-8.
[45] 李昂. 四种土壤调理剂对酸性土壤铝毒害改良效果研究[D]. 北京: 中国农业科学院, 2014.LI A. Remediate effects on aluminum toxicity by using four soil conditioners in acid soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
LI A. Remediate effects on aluminum toxicity by using four soil conditioners in acid soils[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
[46] 李正强, 熊俊芬, 马琼芳, 等. 4种改良剂对铅锌尾矿污染土壤中光叶紫花苕生长及重金属吸收特性的影响[J]. 中国生态农业学报, 2010, 18(1):158-163.LI Z Q, XIONG J F, MA Q F, et al. Effect of different amendments on growth and heavy metal accumulation in Vicia villosa Roth varglabrescens cv Yunguangzao in soils polluted with lead/zinc mine tailings[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):158-163.
LI Z Q, XIONG J F, MA Q F, et al. Effect of different amendments on growth and heavy metal accumulation in Vicia villosa Roth varglabrescens cv Yunguangzao in soils polluted with lead/zinc mine tailings[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1):158-163.
[47] 李旭华, 张海伟, 叶为民, 等. 基肥施用方式对烤烟根系生长及根际微生态环境的影响[J]. 西南农业学报, 2017, 30(10):2284-2289.LI X H, ZHANG H W, YE W M, et al. Effects of different basal-dressing application methods on flue-cured root growth and rhizosphere microenvironment[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(10):2284-2289.
LI X H, ZHANG H W, YE W M, et al. Effects of different basal-dressing application methods on flue-cured root growth and rhizosphere microenvironment[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(10):2284-2289.
[48] 喻延. 土壤pH值及不同调控措施对烟草青枯病发生情况的影响[D]. 重庆: 西南大学, 2017.YU Y. Effects of soil pH and different control measures on tobacco bacterial wilt status[D]. Chongqing: Southwest University, 2017.
YU Y. Effects of soil pH and different control measures on tobacco bacterial wilt status[D]. Chongqing: Southwest University, 2017.
[49] 刘阳, 张西兴, 庞世花. 利用白云石和钾长石制备钾钙肥的研究[J]. 磷肥与复肥, 2015, 30(11):9-10+12.LIU Y, ZHANG X X, PANG S H. Study on preparation of potassium-calcium fertilizer from dolomite andpotash feldspar[J]. Phosphate & Compound Fertilizer, 2015, 30(11):9-10+12.
LIU Y, ZHANG X X, PANG S H. Study on preparation of potassium-calcium fertilizer from dolomite andpotash feldspar[J]. Phosphate & Compound Fertilizer, 2015, 30(11):9-10+12.
[50] 钟菊文. 白云石镁肥的加工与应用推广[J]. 江西农业, 2017(9):40.ZHONG J W. Processing and application promotion of dolomite magnesium fertilizer[J]. Acta Agriculturae Jiangxi, 2017(9):40. doi: 10.3969/j.issn.1674-1479.2017.09.018
ZHONG J W. Processing and application promotion of dolomite magnesium fertilizer[J]. Acta Agriculturae Jiangxi, 2017(9):40. doi: 10.3969/j.issn.1674-1479.2017.09.018
[51] 王鹏飞, 田滔, 张应华, 等. 复配改良剂对设施酸化土壤及团聚体的影响[J]. 环境科学与技术, 2021, 44(12):167-176.WANG P F, TIAN T, ZHANG Y H, et al. Effect of compound amendments on acidified soil and aggregate in greenhouse[J]. Environmental Science & Technology, 2021, 44(12):167-176.
WANG P F, TIAN T, ZHANG Y H, et al. Effect of compound amendments on acidified soil and aggregate in greenhouse[J]. Environmental Science & Technology, 2021, 44(12):167-176.
[52] 佀国涵, 王毅, 徐大兵, 等. 不同施肥结构对酸性黄棕壤修复效果研究[J]. 土壤, 2016, 48(4):714-719.SI G H, WANG Y, XU D B, et al. Amelioration effects of different fertilization structure on acid yellow browr[J]. Soil, 2016, 48(4):714-719.
SI G H, WANG Y, XU D B, et al. Amelioration effects of different fertilization structure on acid yellow browr[J]. Soil, 2016, 48(4):714-719.
[53] MALEK S, WAZNY R, BLOṄSKA E, et al. Soil fungal diversity and biological activity as indicators of fertilization strategies in a forest ecosystem after spruce disintegration in the Karpaty Mountains[J]. Science of The Total Environment, 2021, 751:142335. doi: 10.1016/j.scitotenv.2020.142335
[54] GIAGNONI L, DOS ANJOS BORGES L G, GIONGO A, et al. Dolomite and compost amendments enhance Cu phytostabilization and increase microbiota of the leachates from a Cu-contaminated soil[J]. Agronomy, 2020, 10(5):719. doi: 10.3390/agronomy10050719
[55] 王文军, 张祥明, 凌国宏, 等. 皖南山区潜育性水稻土剖面性状及无机改良剂改良效果[J]. 水土保持学报, 2014, 28(1):237-241.WANG W J, ZHANG X M, LING G H, et al. Soil profile properties of gleyed paddy soils and improvement effects of inorganic amendment in south Anhui mountainous areas[J]. Journal of Soil and Water Conservation, 2014, 28(1):237-241. doi: 10.3969/j.issn.1009-2242.2014.01.045
WANG W J, ZHANG X M, LING G H, et al. Soil profile properties of gleyed paddy soils and improvement effects of inorganic amendment in south Anhui mountainous areas[J]. Journal of Soil and Water Conservation, 2014, 28(1):237-241. doi: 10.3969/j.issn.1009-2242.2014.01.045
[56] 杜瑞英. 土壤改良剂和红麻联合修复对多金属污染土壤中微生物群落功能的影响[J]. 生态与农村环境学报, 2013, 29(1):70-75.DU R Y. Effects of application of soil amendment and cultivation of red ramie in remedying multi-metal contaminated soils on functions of soil microbia community[J]. Journal of Ecology and Rural Environment, 2013, 29(1):70-75. doi: 10.3969/j.issn.1673-4831.2013.01.012
DU R Y. Effects of application of soil amendment and cultivation of red ramie in remedying multi-metal contaminated soils on functions of soil microbia community[J]. Journal of Ecology and Rural Environment, 2013, 29(1):70-75. doi: 10.3969/j.issn.1673-4831.2013.01.012
[57] 欧阳学军, 周国逸, 黄忠良, 等. 土壤酸化对温室气体排放影响的培育实验研究[J]. 中国环境科学, 2005(4):465-470.OUYANG X J, ZHOU G Y, HUANG Z L, et al. The incubation experiment studies on the influence of soil acidification on greenhouse gases emission[J]. China Environmental Science, 2005(4):465-470. doi: 10.3321/j.issn:1000-6923.2005.04.019
OUYANG X J, ZHOU G Y, HUANG Z L, et al. The incubation experiment studies on the influence of soil acidification on greenhouse gases emission[J]. China Environmental Science, 2005(4):465-470. doi: 10.3321/j.issn:1000-6923.2005.04.019
[58] SHAABAN M, WU Y, PENG Q, et al. The interactive effects of dolomite application and straw incorporation on soil N2O emissions[J]. European Journal of Soil Science, 2018, 69(3):502-511. doi: 10.1111/ejss.12541
[59] WU H, HAO X, XU P, et al. CO2 and N2O emissions in response to dolomite application are moisture dependent in an acidic paddy soil[J]. Journal of Soils and Sediments, 2020, 20(8):3136-3147. doi: 10.1007/s11368-020-02652-w
[60] SHAABAN M, PENG Q A, LIN S, et al. Dolomite application enhances CH4 uptake in an acidic soil[J]. Catena, 2016, 140:9-14. doi: 10.1016/j.catena.2016.01.014
[61] WANG Y, YAO Z, ZHAN Y, et al. Potential benefits of liming to acid soils on climate change mitigation and food security[J]. Global Change Biology, 2021, 27(12):2807-2821. doi: 10.1111/gcb.15607
-