基于响应曲面法的钛精矿共用煤-铁粉的预还原

曾富洪, 周兰花. 基于响应曲面法的钛精矿共用煤-铁粉的预还原[J]. 矿产综合利用, 2025, 46(2): 171-177. doi: 10.3969/j.issn.1000-6532.2025.02.024
引用本文: 曾富洪, 周兰花. 基于响应曲面法的钛精矿共用煤-铁粉的预还原[J]. 矿产综合利用, 2025, 46(2): 171-177. doi: 10.3969/j.issn.1000-6532.2025.02.024
ZENG Fuhong, ZHOU Lanhua. Pre-reduction of Titanium Concentrate with Pulverized Coal and Iron Power Based on Response Surface Methodology Method[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 171-177. doi: 10.3969/j.issn.1000-6532.2025.02.024
Citation: ZENG Fuhong, ZHOU Lanhua. Pre-reduction of Titanium Concentrate with Pulverized Coal and Iron Power Based on Response Surface Methodology Method[J]. Multipurpose Utilization of Mineral Resources, 2025, 46(2): 171-177. doi: 10.3969/j.issn.1000-6532.2025.02.024

基于响应曲面法的钛精矿共用煤-铁粉的预还原

  • 基金项目: 钒钛资源综合利用实验室省重点资助项目(035300235)
详细信息
    作者简介: 曾富洪(1969-),男,教授,主要从事冶金资源综合利用研究
    通讯作者: 周兰花(1969-),女,博士,教授,主要从事冶金资源综合利用研究
  • 中图分类号: TD981

Pre-reduction of Titanium Concentrate with Pulverized Coal and Iron Power Based on Response Surface Methodology Method

More Information
  • 这是一篇冶金工程领域的文章。开展了钛精矿粉共同添加煤粉和铁粉的单因素和响应曲面法加热还原实验,研究了温度、加热时间、铁粉添加量各因素不同水平对钛精矿中铁氧化物还原影响,构建了铁的金属化率3次回归模型,探究了各因素对铁的金属化率影响规律。单因素实验表明:铁粉添加量1.5% ~ 4.0%中,高于2.5%后,铁的金属化率能明显得到提高。响应曲面法实验结果分析发现:在对铁氧化物的还原影响程度中,温度>加热时间>铁粉添加量,温度与时间交互作用>加热时间与铁粉添加量的交互作用;1 450 ℃、33.5 min、4%铁粉添加量优化条件下,铁的金属化率可达86.79%,还原产品中金属铁明显呈现。

  • 加载中
  • 图 1  铁的金属化率与时间、温度关系

    Figure 1. 

    图 2  1 400 ℃下铁的金属化率与金属铁粉添加量关系

    Figure 2. 

    图 3  模型预测的Y与实验值Y之间关系

    Figure 3. 

    图 4  钛精矿-煤粉体系1 450 ℃下加热33.5 min产物的SEM

    Figure 4. 

    图 5  图4中点1处扫描能谱分析

    Figure 5. 

    图 6  图4中点2处扫描能谱分析

    Figure 6. 

    图 7  图4中点3处扫描能谱分析

    Figure 7. 

    表 1  钛精矿成分/%

    Table 1.  Composition of titanium concentrate

    TFeTiOFeOFe2O3CaOMnOMgOSiO2Al2O3V2O5其他
    32.246.635.56.51.10.83.23.71.00.51.1
    下载: 导出CSV

    表 2  煤粉成分/%

    Table 2.  Coal composition

    固定碳灰分挥发分
    78.2611.769.98
    下载: 导出CSV

    表 3  单因素实验方案

    Table 3.  Test program of single factors

    温度/℃ 时间/min 钛精矿的铁粉
    添加比例 /%
    温度/℃ 时间/min 钛精矿的铁粉
    添加比例 /%
    温度/℃ 时间/min 钛精矿的铁粉
    添加比例 /%
    1 250 10 0 1 350 20 0 1 450 30 0
    1 300 10 0 1 400 20 0 1 250 35 0
    1 350 10 0 1 450 20 0 1 300 35 0
    1 400 10 0 1 250 25 0 1 350 35 0
    1 450 10 0 1 300 25 0 1 400 35 0
    1 250 15 0 1 350 25 0 1 450 35 0
    1 300 15 0 1 400 25 0 1 400 30 1.5
    1 350 15 0 1 450 25 0 1400 30 2
    1 400 15 0 1 250 30 0 1 400 30 2.5
    1 450 15 0 1 300 30 0 1 400 30 3
    1 250 20 0 1 350 30 0 1 400 30 3.5
    1 300 20 0 1 400 30 0 1 400 30 4
    下载: 导出CSV

    表 4  实验因数选取水平与编码值

    Table 4.  Actual and code value of the variables

    水平温度时间钛精矿的铁粉添加比例
    实际/℃编号实际/min编号实际/%编号
    TAtBMC
    11 450135141
    01 375022.5020
    -11 300-110-10-1
    下载: 导出CSV

    表 5  响应面法实验结果

    Table 5.  Program and results of RSM test

    ABCY /%ABCY /%ABCY /%ABCY /%ABCY /%
    1-1017.101-153.210-164.4-10122.411075.3
    01164.300043.3-11042.200049.3----
    -1-108.800043.210173.400042.2----
    -10-117.50-1-131.500045.50-1124.5----
    下载: 导出CSV

    表 6  未手动处理的方差分析

    Table 6.  ANOVA without manual operation

    来源平方和df均方F 值P 值显著程度
    模型6 37812531.565.90.000 5*
    A2 396.112 396.1297.1< 0.000 1**
    B945.561945.56117.240.000 4*
    C4.214.20.520.510 3
    AB153.761153.7619.070.012*
    AC4.214.20.520.510 3
    BC81.9181.910.160.033 3*
    A264.04164.047.940.047 9*
    B2103.171103.1712.790.023 2*
    C255.33155.336.860.058 8
    A2B113.251113.2514.040.02*
    A2C12.01112.011.490.289 5
    AB2399.031399.0349.480.002 2*
    Pure Error32.2648.06
    Cor Total6 410.2616
    注:P≤0.000 1,为非常显著,用**表示;P≤0.05,为显著,用*表示;P>0.05,为不显著。
    下载: 导出CSV

    表 7  手动处理的方差分析

    Table 7.  ANOVA analysis with manual operation

    来源平方和df均方F 值P 值显著程度
    模型6 369.610636.9693.98< 0.000 1**
    A2 396.112 396.1353.54< 0.000 1**
    B945.561945.56139.51< 0.000 1**
    AB153.761153.7622.690.003 1*
    BC81.9181.912.080.013 2*
    A264.04164.049.450.021 8*
    B2103.171103.1715.220.008*
    C255.33155.338.160.028 9*
    A2B113.251113.2516.710.006 4*
    A2C48.3148.37.130.037*
    AB2399.031399.0358.880.000 3*
    Residual40.6666.78
    Lack of Fit8.4124.20.520.629 3not significant
    Pure Error32.2648.06
    Cor Total6 410.2616
    注:P≤0.000 1,为非常显著,用**表示;P≤0.05,为显著,用*表示;P>0.05,为不显著。
    下载: 导出CSV
  • [1]

    刘立伟, 赵礼兵, 李国峰, 等. 某钒钛磁铁精矿深度还原-磁选试验研究[J]. 矿产综合利用, 2020(6): 56-63.LIU L W , ZHAO L B , LI G F, et al. Study on coal-based reduction followed by magnetic separation of a vanadium-titanium magnetite concentrate[J]. Multipurpose Utilization of Mineral, 2020(6): 56-63.

    LIU L W , ZHAO L B , LI G F, et al. Study on coal-based reduction followed by magnetic separation of a vanadium-titanium magnetite concentrate[J]. Multipurpose Utilization of Mineral, 2020(6): 56-63.

    [2]

    范兴祥, 余宇楠, 袁威, 等. 利用云南钛铁精矿制备还原铁粉及富钛料的试验研究[J]. 矿产综合利用, 2018(2):52-56.FAN X X, YU Y N, YUAN W, et al. Experimental research on preparation of reduced iron powder and rich titanium materials from Yunnan titanium ore concentrate[J]. Multipurpose Utilization of Mineral, 2018(2):52-56.

    FAN X X, YU Y N, YUAN W, et al. Experimental research on preparation of reduced iron powder and rich titanium materials from Yunnan titanium ore concentrate[J]. Multipurpose Utilization of Mineral, 2018(2):52-56.

    [3]

    付贵勤, 薛逊, 汪锋, 等. 钒钛酸性渣还原过程中钒钛赋存状态的研究[J]. 矿产资源综合利用, 2009(2):40-44.FU G Q, XUE X, WANG F, et al. Study on the occurrence of Ti during reduction process of the acidic vanadium -titanium[J]. Multipurpose Utilization of Mineral, 2009(2):40-44.

    FU G Q, XUE X, WANG F, et al. Study on the occurrence of Ti during reduction process of the acidic vanadium -titanium[J]. Multipurpose Utilization of Mineral, 2009(2):40-44.

    [4]

    张世敏, 黄孟阳, 彭金辉, 等. 微波还原越南钛精矿制备初级富钛料新工艺研究[J]. 矿产资源综合利用, 2007(3):17-20.ZHANG S M, HUANG M Y, PENG J H, et al. Study on preparing primary titanium materials from self-reduced pellet 0f vietnam ilmenite concentrate by microwave reduction[J]. Multipurpose Utilization of Mineral, 2007(3):17-20.

    ZHANG S M, HUANG M Y, PENG J H, et al. Study on preparing primary titanium materials from self-reduced pellet 0f vietnam ilmenite concentrate by microwave reduction[J]. Multipurpose Utilization of Mineral, 2007(3):17-20.

    [5]

    刘云龙, 郭培民, 庞建明, 等. 高杂质钛铁矿固态催化还原动力学研究[J]. 钢铁钒钛, 2013, 34(6):1-5.LIU Y L, GUO P M, PANG J M, et al. Kinetics study on solid-phase catalytic reduction of highly impure ilmenite by thermal analysis[J]. Iron Steel Vanadium Titanium, 2013, 34(6):1-5.

    LIU Y L, GUO P M, PANG J M, et al. Kinetics study on solid-phase catalytic reduction of highly impure ilmenite by thermal analysis[J]. Iron Steel Vanadium Titanium, 2013, 34(6):1-5.

    [6]

    Y. Zhao, F. Shadman. Kinetics and mechanism of ilmenite reduction with carbon monoxide[J]. AICHE Journal, 1990, 36(9):1433-1438. doi: 10.1002/aic.690360917

    [7]

    J. Pesl, R. H. Eric. High temperature carbothermic reduction of Fe2O3-TiO2-MxOy oxide mixtures[J]. Minerals Engineering, 2002(15):971-984.

    [8]

    WANG Yu-ming, YUAN Zhang-fu, GUO Zhan-cheng, et al. Reduction mechanism of natural ilmenite with graphite[J]. Tansaction. Nonferrous Metals Society of China, 2008, 180:962-968.

    [9]

    C. S. Kucukkaragoz, R. H. Eric. Solid state reduction of a nature ilmenite[J]. Miners Engineering, 2006, 19:334-337. doi: 10.1016/j.mineng.2005.09.015

    [10]

    Hai-peng GOU, Guo-hua ZHANG, Xiao-jun HU, et al. Kinetic study on carbothermicreduction of ilmenite with activated carbon[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8):1856-1861. doi: 10.1016/S1003-6326(17)60209-7

    [11]

    韩可喜. 钛精矿预还原球团冶炼钛渣的电耗水平分析[J]. 钢铁钒钛, 2014, 35(2):51-55.HAN K X. Analysis on electricity consumption for titanium slag smelting with pre-reduced concentrate pellets[J]. Iron Steel Vanadium Titanium, 2014, 35(2):51-55.

    HAN K X. Analysis on electricity consumption for titanium slag smelting with pre-reduced concentrate pellets[J]. Iron Steel Vanadium Titanium, 2014, 35(2):51-55.

    [12]

    信晓飞, 张晋霞, 冯洪均. 响应曲面法优化含锌尘泥选择性浸出工艺[J]. 矿产综合利用, 2021(2):146-151.XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral, 2021(2):146-151.

    XIN X F, ZHANG J X, FENG H J. Optimization of selective leaching technology from zinc-bearing dust using response surface methodology[J]. Multipurpose Utilization of Mineral, 2021(2):146-151.

    [13]

    吕学伟, 张凯, 黄润, 等. 添加剂对钛精矿固相碳热还原强化作用的比较[J]. 东北大学学报(自然科学版), 2013, 34(11):1601-1605.LU X W, ZHANG K, HUANG R. Comparison of the effects of different additives on the solid phase carbon thermal reduction of ilmenite[J]. Journal of Northeastern University(Natural Science), 2013, 34(11):1601-1605.

    LU X W, ZHANG K, HUANG R. Comparison of the effects of different additives on the solid phase carbon thermal reduction of ilmenite[J]. Journal of Northeastern University(Natural Science), 2013, 34(11):1601-1605.

    [14]

    郭兴敏, 唐洪福, 张圣弼. Li2CO3在含碳球团中催化机理的研究[J]. 金属学报, 2000, 36(6):638-641.GUO X M, TANG H F, ZHANG S B. Study on the catalysis mechanism of Li2CO3 for reduction of iron ore pellet with carbon[J]. Acta Metellurgical Sinica, 2000, 36(6):638-641.

    GUO X M, TANG H F, ZHANG S B. Study on the catalysis mechanism of Li2CO3 for reduction of iron ore pellet with carbon[J]. Acta Metellurgical Sinica, 2000, 36(6):638-641.

    [15]

    刘牡丹, 姜涛, 李光辉. 硫酸钠和碳酸钠对高铝铁矿钠化还原动力学规律的影响[J]. 中国有色金属学报, 2015, 25(1):220-226.LIU M D, JIANG T, LI G H. Effects of Na2SO4 and Na2CO3 on sodium-reduction dynamics law of high aluminum iron ores[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(1):220-226.

    LIU M D, JIANG T, LI G H. Effects of Na2SO4 and Na2CO3 on sodium-reduction dynamics law of high aluminum iron ores[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(1):220-226.

    [16]

    黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 2013.HUANG X G. Principles of iron and steel metallurgy [M]. Beijing: Metallurgical Industry Press, 2013.

    HUANG X G. Principles of iron and steel metallurgy [M]. Beijing: Metallurgical Industry Press, 2013.

  • 加载中

(7)

(7)

计量
  • 文章访问数:  16
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2022-02-10
刊出日期:  2025-04-25

目录