-
摘要:
某硫化铅锌矿为热水喷流-改造成矿型矿床,脉石矿物主要是白云石。产率40%~50%的浮选尾矿需尾矿库堆存,由于不能扩建或新建尾矿库,矿山的生产面临困难,因此提出全资源化的策略。本研究对磨矿给料中的-15+4 mm粗粒进行重介质旋流器分离白云石,在重悬浮液比重2.1、旋流器压力1.0 kg/cm2的条件下,白云石产率32.70%,含铅0.043%、锌0.16%,铅锌作业损失率分别为1.46%和1.60%,白云石产品经化学分析,满足NBYS19A级耐火材料用白云石。-15+4 mm粒级通过重介质旋流器分离出白云石,可减少32.70%的矿石进入磨浮作业,降低磨浮成本,并实现了白云石的资源化利用,这对推进矿山的全资源化具有重要意义。
Abstract:A lead-zinc sulfide is a reworked SEDEX deposit, in which the main gangue mineral is dolomite. About 40%~50% yield of flotation tailing was need to be stockpiled in tailing pond. Due to the inability to expand tailings ponds or build new one, mine production was facing difficulties, so the strategy of full resource utilization was proposed. In this study, the -15+4 mm coarse-grained fraction of the grinding feed was subjected to a dense medium cyclone to separate dolomite. The dolomite product yield was 32.70% and contained 0.043% Pb and 0.16% Zn at the conditions that the specific gravity of the suspension was 2.1 and the pressure of the cyclone was 1.0 kg/cm2. The loss rate of lead and zinc was 1.46% and 1.60% respectively. The dolomite product met the dolomite of NBYS19A grade refractory material by chemical analysis. The dolomite product was separated from -15+4 mm particles through the dense medium cyclone, and its resource utilization had been realized, which can reduce 32.70% feed entering the grinding and floatation operation, and can reduce the cost of grinding and floatation. It is of great significance to promote the full resource development of the mine.
-
Key words:
- Lead-zinc sulfide ore /
- Dolomite /
- Reworked SEDEX deposit /
- Dense medium cyclone
-
-
表 1 矿石主要元素组成/%
Table 1. Main elements composition of the ore
Pb Zn S Fe BaSO4 Au* Ag* As P 0.84 2.92 8.01 4.65 14.21 0.13 11.32 0.42 0.008 Cd In Ge CaO MgO Al2O3 SiO2 烧失量 0.01 <0.001 <0.001 19.11 13.36 1.61 3.86 20.70 *单位为g/t。 表 2 某铅锌矿矿物组成
Table 2. Mineral composition of the Pb-Zn ore
矿物 含量/% 矿物 含量/% 矿物 含量/% 矿物 含量/% 矿物 含量/% 闪锌矿 4.350 铁白云石 0.487 角闪石 0.022 褐铁矿 0.167 黄钾铁矾 0.047 方铅矿 0.729 方解石 0.080 电气石 0.014 萤石 0.005 其他 0.390 灰硫砷(锑)铅矿 0.066 石英 1.984 镁铝蛇纹石 0.013 金红石 0.006 合计 100.000 白铅矿 0.048 钾长石 0.014 高岭石 0.013 重晶石 16.020 黄铁矿 10.506 钡冰长石 0.072 磷灰石 0.007 碳酸钙钡矿 0.021 白云石 63.722 绢云母 1.205 菱铁矿(含锌) 0.011 碳酸锶矿 0.001 表 3 -15 mm粒级金属分配
Table 3. Metal distribution of -15 mm size range
粒级/mm 产率/% 品位/% 分配率/% Pb Zn Pb Zn -2 16.04 1.02 3.02 16.88 14.56 -4+2 6.59 1.07 3.44 7.28 6.82 -15+4 77.37 0.95 3.38 75.84 78.62 合计 100.00 0.97 3.33 100.00 100.00 表 4 -15+4 mm粒级浮沉实验结果
Table 4. Sink-float test results of -15+4 mm
产品 产率/% 品位/% 回收率/% Pb Zn Pb Zn 个别 累计 个别 累计 个别 累计 个别 累计 -2.7 mm 0.98 0.094 0.34 0.11 0.10 -2.9+2.7 mm 27.28 0.030 0.034 0.12 0.13 0.91 1.02 1.02 1.12 -3.1+2.9 mm 25.39 0.081 0.061 0.91 0.50 2.37 7.01 +3.1 mm 23.72 2.65 9.80 72.45 70.49 给料(-15+4 mm) 77.37 0.95 3.35 75.84 78.62 表 5 重介质分选扩大实验结果
Table 5. Results of scale-up test of heavy medium cyclone
产品 产率/% 品位/% 回收率/% Pb Zn Pb Zn 精矿 44.67 1.61 5.68 74.38 77.02 白云石 32.70 0.043 0.16 1.46 1.60 给料 77.37 0.95 3.35 75.84 78.62 表 6 白云石产品矿物定量结果
Table 6. Mineral composition of dolomite products
矿物 含量/% 矿物 含量/% 矿物 含量/% 矿物 含量/% 矿物 含量/% 矿物 含量/% 白云石 92.68 黄铁矿 3.16 石英 1.17 铁白云石 1.13 重晶石 0.79 绢云母 0.42 闪锌矿 0.21 角闪石 0.15 碳酸钙钡矿 0.09 方铅矿 0.04 方解石 0.03 钡冰长石 0.03 萤石 0.02 电气石 0.01 金红石 0.01 正长石 0.01 其他 0.05 表 7 白云石产品主要元素分析
Table 7. Multi-element analysis of dolomite products
元素 MgO SiO2 CaO Al2O3 Fe2O3 Mn3O4 含量/% 19.45 1.34 28.14 0.36 0.94 0.29 NBYS19A MgO SiO2 CaO ≥19 ≤2.0 ≥25 -
[1] 汪应玲, 罗绍华, 姜茂发, 等. 铁尾矿制备地质聚合物工艺条件研究[J]. 矿产综合利用, 2019(5):121-126.WANG Y L, LUO S H, JIANG M F, et al. Study on process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026
WANG Y L, LUO S H, JIANG M F, et al. Study on process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026
[2] 祁磊, 席欣月, 蔡鑫, 等. 北衙硫化矿选厂尾矿中金银铁综合回收实验研究[J]. 矿产综合利用, 2021(4):182-187.QI L, XI X Y, CAI X, et al. Experimental research on comprehensive recovery of gold, silver and iron intailings of beiya sulfide ore concentrator[J]. Multipurpose Utilization of Mineral Resources, 2021(4):182-187.
QI L, XI X Y, CAI X, et al. Experimental research on comprehensive recovery of gold, silver and iron intailings of beiya sulfide ore concentrator[J]. Multipurpose Utilization of Mineral Resources, 2021(4):182-187.
[3] 刘俊杰, 梁 钰, 曾 宇, 等. 利用铁尾矿制备免烧砖的研究[J]. 矿产综合利用, 2020(5):136-141.LIU J J, LIANG Y, ZENG Y, et al. Preparation of baking-free bricks by iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5):136-141.
LIU J J, LIANG Y, ZENG Y, et al. Preparation of baking-free bricks by iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(5):136-141.
[4] 孙强强, 亢小红. 钙长石系尾矿微晶玻璃的制备及发光性能[J]. 矿产综合利用, 2020(4):152-155.SUN Q Q, KANG X H. Experiment of preparing feldspar glass-ceramics and luminescence properties[J]. Multipurpose Utilization of Mineral Resources, 2020(4):152-155. doi: 10.3969/j.issn.1000-6532.2020.04.026
SUN Q Q, KANG X H. Experiment of preparing feldspar glass-ceramics and luminescence properties[J]. Multipurpose Utilization of Mineral Resources, 2020(4):152-155. doi: 10.3969/j.issn.1000-6532.2020.04.026
[5] 姚华辉, 蔡练兵, 刘维, 等. 我国金属矿山废石资源化综合利用现状与发展[J]. 中国有色金属学报, 2021, 31(6):1649-1660.YAO H H, CAI L B, LIU W, et al. Current status and development of comprehensive utilization of waste rock in metal mines in China[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(6):1649-1660.
YAO H H, CAI L B, LIU W, et al. Current status and development of comprehensive utilization of waste rock in metal mines in China[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(6):1649-1660.
[6] 李林, 姜涛, 陈超, 等. 攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究[J]. 矿产综合利用, 2020(6):7-13.LI L, JIANG T, CHEN C, et al. Study on preparation of water-retaining foam ceramics from vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6):7-13. doi: 10.3969/j.issn.1000-6532.2020.06.002
LI L, JIANG T, CHEN C, et al. Study on preparation of water-retaining foam ceramics from vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6):7-13. doi: 10.3969/j.issn.1000-6532.2020.06.002
[7] 杨洁, 徐龙华, 陈洲, 等. 锂辉石浮选尾矿发泡法制备多孔陶瓷材料及其性能[J]. 中国有色金属学报, 2020, 30(9):2234-2246.YANG J, XU L H, CHEN Z, et al. Preparation and properties of porous ceramics from spodumene flotation tailings[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9):2234-2246.
YANG J, XU L H, CHEN Z, et al. Preparation and properties of porous ceramics from spodumene flotation tailings[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9):2234-2246.
[8] 选矿手册编委会. 选矿手册, 第三卷, 第一分册[M]. 北京: 冶金工业出版社, 1993: 7.Mineral Processing handbook Editorial Board. Mineral Processing handbook, Volume 3(1) [M]. Beijing: Metallurgical Industry Press, 1993: 7.
Mineral Processing handbook Editorial Board. Mineral Processing handbook, Volume 3(1) [M]. Beijing: Metallurgical Industry Press, 1993: 7.
[9] 李晋明, 刘淑清. 用重介质涡流旋流器从洗矸中回收硫铁矿[J]. 选煤技术, 1985(4):12-14.LI J M, LIU S Q. Recovery of pyrite from washing waste with dense medium vortex cyclone[J]. Coal Preparation Technology, 1985(4):12-14.
LI J M, LIU S Q. Recovery of pyrite from washing waste with dense medium vortex cyclone[J]. Coal Preparation Technology, 1985(4):12-14.
[10] 魏祥松, 黄启生, 李宇新. 宜昌花果树磷矿重介质选别工业生产实践[J]. 武汉工程大学学报, 2011, 33(3):48-52.WEI X S, HUANG Q S, LI Y X. Study on dense medium separation and its’ application in Huaguoshu phosphorite deposit[J]. Journal of Wuhan Institute of Technology, 2011, 33(3):48-52.
WEI X S, HUANG Q S, LI Y X. Study on dense medium separation and its’ application in Huaguoshu phosphorite deposit[J]. Journal of Wuhan Institute of Technology, 2011, 33(3):48-52.
[11] 陈岳麓, 罗新民. 潘家冲铅锌矿重介质旋流器选矿工艺研究[J]. 湖南有色金属, 1988(4):26-31CHEN Y L, LUO X M. Research on beneficiation technology of dense medium cyclone of the lead-zinc ore in Paijiachong[J]. Hunan Nonferrous Metals, 1988(4):26-31.
CHEN Y L, LUO X M. Research on beneficiation technology of dense medium cyclone of the lead-zinc ore in Paijiachong[J]. Hunan Nonferrous Metals, 1988(4):26-31.
[12] 周峰, 余浔. 哈萨克斯坦某钨矿预选抛尾工艺设计研究[J]. 有色金属(选矿部分), 2019(6):43-49.ZHOU F, YU X. Research on pre-discarding tailings process for a certain tungsten polymetallic ore in Kazakhstan[J]. Nonferrous Metals(Mineral Processing Section), 2019(6):43-49.
ZHOU F, YU X. Research on pre-discarding tailings process for a certain tungsten polymetallic ore in Kazakhstan[J]. Nonferrous Metals(Mineral Processing Section), 2019(6):43-49.
[13] 郭振勋, 孙赛龙. 硫化锑矿石重介质选矿[J]. 湖南有色金属, 1990, 6(2):21-26GUO Z X, SUN S L. Heavy medium beneficiation on antimony sulfide[J]. Hunan Nonferrous Metals, 1990, 6(2):21-26.
GUO Z X, SUN S L. Heavy medium beneficiation on antimony sulfide[J]. Hunan Nonferrous Metals, 1990, 6(2):21-26.
[14] 牛佳, 郑义, 周永章, 等. 桂中盘龙铅锌矿流体包裹体特征及其对钦杭成矿带热水喷流-改造成矿作用的指示[J]. 岩石学报, 2017, 33(3): 753-766.NIU J, ZHENG Y, ZHOU Y Z, et al. A fluid inclusions study of the Panlong lead-zinc deposit and its implication for genesis[J]. Acta Petrologica Sinica, 33(3): 753-766.
NIU J, ZHENG Y, ZHOU Y Z, et al. A fluid inclusions study of the Panlong lead-zinc deposit and its implication for genesis[J]. Acta Petrologica Sinica, 33(3): 753-766.
-