Petrogenesis and Geological Significance of the Adi Keyh A-type Rhyolite in Central Eritrea
-
摘要: 厄立特里亚位于东非裂谷系统(EARS)北部,区内新生代火山活动明显,但对其研究十分有限。Adi Keyh流纹岩产于厄立特里亚中部,锆石LA-ICP-MS U-Pb定年结果显示其形成时代为26.1±0.2Ma,属于渐新世。全岩地球化学分析结果显示,该流纹岩具有高硅(SiO2=72.97%~73.53%)、富碱(ALK=8.94%~9.12%)、富钾(K2O/Na2O=1.15~1.18)的特征,为高钾钙碱性岩石系列;微量元素富集Th、La、Ce、Nd和Zr而强烈亏损Ba、Sr、P和Ti等元素,并且Zr+Nb+Ce+Y含量和10000×Ga/Al比值较高;轻稀土元素相对富集,Eu负异常显著。Hf和Sr同位素组成为:ε Hf (t)=+12.0~+20.4;(87Sr/86Sr) i i=0.70424~0.70477。岩石地球化学及Hf-Sr同位素组成显示Adi Keyh流纹岩为A1型板内流纹岩,可能为新生镁铁质下地壳部分熔融的产物,构造背景为渐新世EARS裂谷期阿法(Afar)地幔柱活动引发的岩石圈伸展。Abstract: Eritrea, located in the northern of the Eastern African Rift System (EARS), is featured with rich Cenozoic volcanic activites that are neglected by geologists. The Adi Keyh rhyolite, developed in central Eritrea, is confirmed to format 26.07±0.18 Ma during Oligocene by Zircon LA-ICP-MS U-Pb isotope dating . After geochemical analysis, the rhyolite samples are regarded as high-K calc-alkaline series characterized by high SiO2 (72.97% - 73.53%), high ALK (8.94% - 9.12%), and rich potassium (K2O/Na2O=1.15 - 1.18). They are enriched in Th, La, Ce, Nd and Zr, but depleted in Ba, Sr, P and Ti, with high Zr+Nb+Ce+Y and 10000×Ga/Al values. They are also rich in LREE with strong negative Eu anomaly. The Hf-Sr isotopiccontent of rhyoliteare high positive ε Hf (t) (+12.0 - +20.4) and low (87Sr/86Sr) i (0.70424~0.70477). Geochemical features and Hf-Sr isotopic composition indicate that the Adi Keyh rhyolite is categorized as A1-type intraplate rhyolite, which may be the product of partial melting of the juvenile mafic lower crust with the tectonic setting of lithosphere extension triggered by the Afar mantle plume during the EARS Rift in Oligocene.
-
Key words:
- geochemistry /
- Zircon U-Pb age /
- Hf-Sr isotope /
- rhyolite /
- Eritrea
-
-
[1] 陈开旭, 孙为国, 王建雄, 张继纯, 胡瑞春, 李闫华, 刘国庆, 汤质华, 严永祥. 2013.厄立特里亚中南部地区地质与地球化学调查报告[R]. 武汉: 中国地质调查局武汉地质调查中心.
[2] 贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 33(3): 465-480.
[3] 雷勇亮, 戴佳文, 白强, 王凯兴, 孙立强, 刘晓东, 余驰达, 何世伟. 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义[J]. 岩石学报, 37(7): 1964-1982.
[4] 刘超然, 徐大良, 赵小明, 邓新, 谭满堂. 2021. 南大别蕲春构造混杂岩带中变质沉积岩源区和时代限定[J]. 华南地质, 37(1): 1-28.
[5] 吕昭英, 陈沐龙, 胡在龙, 傅杨荣, 魏昌欣, 袁勤敏, 常振宇, 黄武轩. 2019. 琼北翁田铝质A型花岗岩的锆石U-Pb年代学、地球化学特征及其地质意义[J]. 华南地质与矿产, 35(3): 306-316.
[6] 马超, 汤艳杰, 英基丰. 2019. 俯冲带岩浆作用与大陆地壳生长[J]. 地球科学, 44(4): 1128-1142.
[7] 吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217-1238.
[8] 夏林圻, 徐学义, 李向民, 夏祖春, 马中平. 2012. 亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究[J]. 西北地质, 45(2): 1-26.
[9] 许保良, 阎国翰, 张臣, 李之彤, 何中甫. 1998. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘,5(3): 113-124.
[10] 姚华舟, 陈开旭, 王建雄, 杨振强, 韦延光, 李闫华, 徐景银, 孙为国. 2018.东非裂谷系统(EARS)地幔柱成因的新生代火山作用地球化学标志[J]. 华南地质与矿产, 34(1): 10-21.
[11] 于玉帅, 高原, 杨竹森, 田世洪, 刘英超, 曹圣华, 胡为正, 郄海满. 2011. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 岩石学报, 27(7): 1949-1960.
[12] 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4): 621-626.
[13] 赵凯, 姚华舟, 王建雄, Ghebsha F G, 向文帅, 杨镇. 2020. 厄立特里亚Koka花岗岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 地球科学, 45(1): 156-167.
[14] Abbate E, Bruni P, Ferretti M P, Delmer C, Laurenzi M A, Hagos M, Bedri O, Rook L, Sagri M, Libsekal Y. 2014. The East Africa Oligocene intertrappean beds: Regional distribution, depositional environments and Afro/Arabian mammal dispersals[J]. Journal of African Earth Sciences, 99: 463-489.
[15] Ayalew D, Barbey P, Marty B, Reisberg L, Yirgu G, Pik R. 2002. Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts[J]. Geochimica et Cosmochimica Acta, 66(8): 1429-1448.
[16] Ayalew D, Gibson S A. 2009. Head-to-tail transition of the Afar mantle plume: Geochemical evidence from a Miocene bimodal basalt–rhyolite succession in the Ethiopian Large Igneous Province[J]. Lithos, 112(3-4): 461-476.
[17] Baker J A, Thirlwall M F, Menzies M A. 1996. Sr-Nd-Pb isotopic and trace element evidence for crustal contamination of plume-derived flood basalts; Oligocene flood volcanism in western Yemen[J]. Geochimica et Cosmochimica Acta, 60(14): 2559-2581.
[18] Barrat J A, Joron J L, Taylor R N, Fourcade S, Nesbitt R W, Jahn B M. 2003. Geochemistry of basalts from Manda Hararo, Ethiopia: LREE-depleted basalts in Central Afar[J]. Lithos, 69(1-2): 1-13.
[19] Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth Planet Science Letters, 148: 243–258.
[20] Caricchi L, Ulmer P, Peccerillo A. 2006. A high-pressure experimental study on the evolution of the silicic magmatism of the Main Ethiopian Rift[J]. Lithos, 91(1-4): 46-58.
[21] Collins W J, Beams S D, White A J R, Chappell, B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189-200.
[22] Ebinger C J, Sleep N H. 1998. Cenozoic magmatism throughout east Africa resulting from impact of a single plume[J]. Nature, 395: 788-791.
[23] Eby G N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 20(7): 641-644.
[24] Eiler J M. 2007. On the Origins of Granites[J]. Science, 315(5814): 951-952.
[25] Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 42(11): 2033-2048.
[26] Furman T, Kaleta K M, Bryce J G, Hanan B B. 2006a. Tertiary Mafic Lavas of Turkana, Kenya: Constraints on East African Plume Structure and the Occurrence of High-μ Volcanism in Africa[J]. Journal of Petrology, 47(6): 1221-1244.
[27] Furman T, Bryce J G, Rooney T, Hanan B B, Yirgu G, Ayalew D. 2006b. Heads and tails: 30 million years of the Afar plume[J]. Geological Society, London, Special Publications, 259(1): 95-119.
[28] George R, Rogers N, Kelley S. 1998. Earliest magmatism in Ethiopia:Evidence for two mantle plumes in one flood basalt province[J]. Geology, 26(10): 923-926.
[29] George R, Rogers N. 2002. Plume dynamics beneath the African plate inferred from the geochemistry of the Tertiary basalts of southern Ethiopia[J]. Contributions to Mineralogy and Petrology, 144(3): 286-304.
[30] Griffin W L, Pearson N J, Belousova, E, Jackson S E, van Achterbergh E, O’Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochemica et Cosmochimica Acta, 64: 133–147.
[31] Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3-4): 237-269.
[32] Hawkesworth C, Kelley S, Turner S, Roex L A, Storey B. 1999. Mantle processes during Gondwana break-up and dispersal[J]. Journal of African Earth Sciences, 28(1): 239-261.
[33] Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution[J]. Earth and Planetary Science Letters, 79(1-2): 33-45.
[34] Hoskin P W O. 2005. Trace element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 69(3): 637-648.
[35] Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399.
[36] Johnson P R, Andresen A, Collins A S, Fowler A R, Fritz H, Ghebreab W, Kusky T, Stern R J. 2011. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 61(3): 167-232.
[37] Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D, Jerram D A, Keller F, Meugniot C. 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell[J]. Journal of Petrology, 45(4): 793-834.
[38] Kirstein L A, Peate D W, Hawkesworth C J, Turner S P, Harris C, Mantovani M S M. 2000. Early Cretaceous basaltic and rhyolitic magmatism in southern Uruguay associated with the opening of the South Atlantic[J]. Journal of Petrology, 41(9): 1413-1438.
[39] Le Maitre R W. 1989. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences, Subcommission on the systematics of igneous Rocks[M]. Oxford, UK: Blackwell ScientificPublications, 1-193.
[40] Lindberg B, Eklund O. 1988. Interactions between basaltic and granitic magmas in a Svecofennian postorogenic granitoid intrusion, Aland, Southwest Finland[J]. Lithos, 22(1): 13-23.
[41] Litvinovsky B A, Jahn B, Zanvilevich A N, Saunders A, Poulain S, Kuzmin D V, Reichow M K, Titov A V. 2002. Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia); implications for the origin of A-type granitoid magmas[J]. Chemical Geology, 189(1-2): 105-133.
[42] Liu Y S, Hu Z C, Gao S, Güenther D, Xu Juan, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43.
[43] Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen; U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571.
[44] Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546.
[45] Loiselle M C Wones D R. 1979.Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 11(7): 468.
[46] Ludwig K R. 2004. Isoplot/Ex, a geochronological toolkit for Microsoft Excel, Version 3.00. [J]. Berkeley Geochronology Center, Berkeley, CA.
[47] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643.
[48] Marty B, Pik R, Gezahegn Y. 1996. Helium isotopic variations in Ethiopian plume lavas; nature of magmatic sources and limit on lower mantle contribution[J]. Earth and Planetary Science Letters, 144(1-2): 223-237.
[49] Meshesha D, Shinjo R. 2007. Crustal contamination and diversity of magma sources in the northwestern Ethiopian volcanic province[J]. Journal of Mineralogical and Petrological Sciences, 105(5): 272-290.
[50] Meshesha D, Shinjo R. 2008. Rethinking geochemical feature of the Afar and Kenya mantle plumes and geodynamic implications[J]. Journal of Geophysical Research, 113, B09209.
[51] Patiño Douce A E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 25(8): 743-746.
[52] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983.
[53] Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81.
[54] Peng Z X, Mahoney J J. 1995. Drillhole lavas from the northwestern Deccan Traps, and the evolution of Réunion hotspot mantle[J]. Earth and Planetary Science Letters, 134: 169-185.
[55] Pik R, Deniel C, Coulon C, Yirgu G, Hofmann C, Ayalew D. 1998. The northwestern Ethiopian Plateau flood basalts; classification and spatial distribution of magma types[J]. Journal of Volcanology and Geothermal Research, 81(1-2): 91-111.
[56] Reichow M K, Saunders A D, White R V, Al’Mukhamedovb A I and Medvedev A Y. 2005. Geochemistry and petrogenesis of basalts from the West Siberian Basin: An extension of the Permo–Triassic Siberian Traps, Russia[J]. Lithos, 79(3-4): 425-452.
[57] Riley T R, Leat P T, Pankhurst R J, Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting[J]. Journal of Petrology, 42(6): 1043-1065.
[58] Ritsema J, Heijst V H J, Woodhouse J H. 1999. Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland[J]. Science, 286(5446): 1925-1928.
[59] Rooney T, Furman T, Bastow I, Ayalew D, Yirgu G. 2007. Lithospheric modification during crustal extension in the Main Ethiopian Rift[J]. Journal of Geophysical Research, 112, B10201.
[60] Schilling J G. 1973. Afar Mantle Plume:Rare Earth Evidence[J]. Nature, 242: 2-5.
[61] Sheth H C, Pnande K, Bhhutani R. 2001. 40Ar-39Ar ages of Bombay trachytes: Evidence for a Palaeocene[J]. Geophysical Research Letters, 28(18): 3513-3516.
[62] Skjerlie K P, Johnston A D. 1992. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites[J]. Geology, 20: 263-266.
[63] Stern R J, Ali K A, Liegeois J P, Johnson P R, Kozdroj W, Kattan F H. 2011. Distribution and significance of pre-Neoproterozoic zircons in juvenile Neoproterozoic igneous rocks of the Arabian-Nubian Shield[J]. American Journal of Science, 310(9): 791-811.
[64] Stewart K, Rogers N. 1996. Mantle plume and lithosphere contributions to basalts from southern Ethiopia[J]. Earth and Planetary Science Letters, 139(1-2): 195-211.
[65] Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.
[66] Taylor S R, Mclennan S M. 1981. The composition and evolution of the continental crust; rare earth element evidence from sedimentary rocks[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 301(1461): 381-399.
[67] Teklay M, Asmerom Y, Toulkeridis T. 2005. Geochemical and Sr-Nd isotope ratios in Cenozoic basalts from Eritrea:Evidence for temporal evolution from low-Ti tholeiitic to high-Ti alkaline basalts in Afro-Arabian continental flood basalt province[J]. Periodico di Mineralogia, 74(3): 167-182.
[68] Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419.
[69] Whalen J B, Jenner G A, Longstaffe F J, Hegner E. 1996. Nature and evolution of the eastern margin of lapetus: geochemical and isotopic constraints from Siluro-Devonian granitoid plutons in the New Brunswick Appalachians[J]. Canadian Journal of Earth Sciences, 33(2): 140-155.
[70] Xu Y G, Luo Z Y, Huang X L, He B, Xiao L, Xie L W and Shi Y R. 2008. Zircon U–Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochimica et Cosmochimica Acta, 72(13): 3084-3104.
[71] Yan J M, Sun G S, Sun F Y, Li L, Li H R, Gao Z H, Hua L, Yan Z P. 2019. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis[J]. Journal of Earth Science, 30(2): 335-347.
[72] Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence[J]. Lithos, 89(1-2): 89-106.
-
计量
- 文章访问数: 1667
- PDF下载数: 137
- 施引文献: 0