厄立特里亚中部Adi Keyh A型流纹岩成因及地质意义

曾国平, 王建雄, 向文帅, 童喜润, 邵鑫, 胡鹏, 吴发富, 姜军胜, 向鹏. 2022. 厄立特里亚中部Adi Keyh A型流纹岩成因及地质意义. 华南地质, 38(1): 157-173. doi: 10.3969/j.issn.2097-0013.2022.01.012
引用本文: 曾国平, 王建雄, 向文帅, 童喜润, 邵鑫, 胡鹏, 吴发富, 姜军胜, 向鹏. 2022. 厄立特里亚中部Adi Keyh A型流纹岩成因及地质意义. 华南地质, 38(1): 157-173. doi: 10.3969/j.issn.2097-0013.2022.01.012
ZENG Guo-Ping, WANG Jian-Xiong, XIANG Wen-Shuai, TONG Xi-Run, SHAO Xin, Hu Peng, WU Fa-Fu, JIANG Jun-Sheng, XIANG Peng. 2022. Petrogenesis and Geological Significance of the Adi Keyh A-type Rhyolite in Central Eritrea. South China Geology, 38(1): 157-173. doi: 10.3969/j.issn.2097-0013.2022.01.012
Citation: ZENG Guo-Ping, WANG Jian-Xiong, XIANG Wen-Shuai, TONG Xi-Run, SHAO Xin, Hu Peng, WU Fa-Fu, JIANG Jun-Sheng, XIANG Peng. 2022. Petrogenesis and Geological Significance of the Adi Keyh A-type Rhyolite in Central Eritrea. South China Geology, 38(1): 157-173. doi: 10.3969/j.issn.2097-0013.2022.01.012

厄立特里亚中部Adi Keyh A型流纹岩成因及地质意义

  • 基金项目:

    中国地质调查局地质调查项目(Nos. DD20190443,DD20221802)

详细信息
    作者简介: 曾国平(1990—),男,博士,矿物学、岩石学、矿床学专业,E-mail: 1204929467@qq.com
    通讯作者: 王建雄(1966—),男,教授级高级工程师,地质学专业,E-mail: 245425463@qq.com
  • 中图分类号: P581

Petrogenesis and Geological Significance of the Adi Keyh A-type Rhyolite in Central Eritrea

More Information
    Corresponding author: WANG Jian-Xiong
  • 厄立特里亚位于东非裂谷系统(EARS)北部,区内新生代火山活动明显,但对其研究十分有限。Adi Keyh流纹岩产于厄立特里亚中部,锆石LA-ICP-MS U-Pb定年结果显示其形成时代为26.1±0.2Ma,属于渐新世。全岩地球化学分析结果显示,该流纹岩具有高硅(SiO2=72.97%~73.53%)、富碱(ALK=8.94%~9.12%)、富钾(K2O/Na2O=1.15~1.18)的特征,为高钾钙碱性岩石系列;微量元素富集Th、La、Ce、Nd和Zr而强烈亏损Ba、Sr、P和Ti等元素,并且Zr+Nb+Ce+Y含量和10000×Ga/Al比值较高;轻稀土元素相对富集,Eu负异常显著。Hf和Sr同位素组成为:ε Hf (t)=+12.0~+20.4;(87Sr/86Sr) i i=0.70424~0.70477。岩石地球化学及Hf-Sr同位素组成显示Adi Keyh流纹岩为A1型板内流纹岩,可能为新生镁铁质下地壳部分熔融的产物,构造背景为渐新世EARS裂谷期阿法(Afar)地幔柱活动引发的岩石圈伸展。
  • 加载中
  • [1]

    陈开旭, 孙为国, 王建雄, 张继纯, 胡瑞春, 李闫华, 刘国庆, 汤质华, 严永祥. 2013.厄立特里亚中南部地区地质与地球化学调查报告[R]. 武汉: 中国地质调查局武汉地质调查中心.

    [2]

    贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 33(3): 465-480.

    [3]

    雷勇亮, 戴佳文, 白强, 王凯兴, 孙立强, 刘晓东, 余驰达, 何世伟. 2021. 东昆仑造山带海德乌拉铝质A型流纹岩成因及其意义[J]. 岩石学报, 37(7): 1964-1982.

    [4]

    刘超然, 徐大良, 赵小明, 邓新, 谭满堂. 2021. 南大别蕲春构造混杂岩带中变质沉积岩源区和时代限定[J]. 华南地质, 37(1): 1-28.

    [5]

    吕昭英, 陈沐龙, 胡在龙, 傅杨荣, 魏昌欣, 袁勤敏, 常振宇, 黄武轩. 2019. 琼北翁田铝质A型花岗岩的锆石U-Pb年代学、地球化学特征及其地质意义[J]. 华南地质与矿产, 35(3): 306-316.

    [6]

    马超, 汤艳杰, 英基丰. 2019. 俯冲带岩浆作用与大陆地壳生长[J]. 地球科学, 44(4): 1128-1142.

    [7]

    吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217-1238.

    [8]

    夏林圻, 徐学义, 李向民, 夏祖春, 马中平. 2012. 亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究[J]. 西北地质, 45(2): 1-26.

    [9]

    许保良, 阎国翰, 张臣, 李之彤, 何中甫. 1998. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘,5(3): 113-124.

    [10]

    姚华舟, 陈开旭, 王建雄, 杨振强, 韦延光, 李闫华, 徐景银, 孙为国. 2018.东非裂谷系统(EARS)地幔柱成因的新生代火山作用地球化学标志[J]. 华南地质与矿产, 34(1): 10-21.

    [11]

    于玉帅, 高原, 杨竹森, 田世洪, 刘英超, 曹圣华, 胡为正, 郄海满. 2011. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 岩石学报, 27(7): 1949-1960.

    [12]

    张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4): 621-626.

    [13]

    赵凯, 姚华舟, 王建雄, Ghebsha F G, 向文帅, 杨镇. 2020. 厄立特里亚Koka花岗岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 地球科学, 45(1): 156-167.

    [14]

    Abbate E, Bruni P, Ferretti M P, Delmer C, Laurenzi M A, Hagos M, Bedri O, Rook L, Sagri M, Libsekal Y. 2014. The East Africa Oligocene intertrappean beds: Regional distribution, depositional environments and Afro/Arabian mammal dispersals[J]. Journal of African Earth Sciences, 99: 463-489.

    [15]

    Ayalew D, Barbey P, Marty B, Reisberg L, Yirgu G, Pik R. 2002. Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts[J]. Geochimica et Cosmochimica Acta, 66(8): 1429-1448.

    [16]

    Ayalew D, Gibson S A. 2009. Head-to-tail transition of the Afar mantle plume: Geochemical evidence from a Miocene bimodal basalt–rhyolite succession in the Ethiopian Large Igneous Province[J]. Lithos, 112(3-4): 461-476.

    [17]

    Baker J A, Thirlwall M F, Menzies M A. 1996. Sr-Nd-Pb isotopic and trace element evidence for crustal contamination of plume-derived flood basalts; Oligocene flood volcanism in western Yemen[J]. Geochimica et Cosmochimica Acta, 60(14): 2559-2581.

    [18]

    Barrat J A, Joron J L, Taylor R N, Fourcade S, Nesbitt R W, Jahn B M. 2003. Geochemistry of basalts from Manda Hararo, Ethiopia: LREE-depleted basalts in Central Afar[J]. Lithos, 69(1-2): 1-13.

    [19]

    Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth Planet Science Letters, 148: 243–258.

    [20]

    Caricchi L, Ulmer P, Peccerillo A. 2006. A high-pressure experimental study on the evolution of the silicic magmatism of the Main Ethiopian Rift[J]. Lithos, 91(1-4): 46-58.

    [21]

    Collins W J, Beams S D, White A J R, Chappell, B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 80(2): 189-200.

    [22]

    Ebinger C J, Sleep N H. 1998. Cenozoic magmatism throughout east Africa resulting from impact of a single plume[J]. Nature, 395: 788-791.

    [23]

    Eby G N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 20(7): 641-644.

    [24]

    Eiler J M. 2007. On the Origins of Granites[J]. Science, 315(5814): 951-952.

    [25]

    Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 42(11): 2033-2048.

    [26]

    Furman T, Kaleta K M, Bryce J G, Hanan B B. 2006a. Tertiary Mafic Lavas of Turkana, Kenya: Constraints on East African Plume Structure and the Occurrence of High-μ Volcanism in Africa[J]. Journal of Petrology, 47(6): 1221-1244.

    [27]

    Furman T, Bryce J G, Rooney T, Hanan B B, Yirgu G, Ayalew D. 2006b. Heads and tails: 30 million years of the Afar plume[J]. Geological Society, London, Special Publications, 259(1): 95-119.

    [28]

    George R, Rogers N, Kelley S. 1998. Earliest magmatism in Ethiopia:Evidence for two mantle plumes in one flood basalt province[J]. Geology, 26(10): 923-926.

    [29]

    George R, Rogers N. 2002. Plume dynamics beneath the African plate inferred from the geochemistry of the Tertiary basalts of southern Ethiopia[J]. Contributions to Mineralogy and Petrology, 144(3): 286-304.

    [30]

    Griffin W L, Pearson N J, Belousova, E, Jackson S E, van Achterbergh E, O’Reilly S Y, Shee S R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochemica et Cosmochimica Acta, 64: 133–147.

    [31]

    Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S, Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3-4): 237-269.

    [32]

    Hawkesworth C, Kelley S, Turner S, Roex L A, Storey B. 1999. Mantle processes during Gondwana break-up and dispersal[J]. Journal of African Earth Sciences, 28(1): 239-261.

    [33]

    Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution[J]. Earth and Planetary Science Letters, 79(1-2): 33-45.

    [34]

    Hoskin P W O. 2005. Trace element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 69(3): 637-648.

    [35]

    Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399.

    [36]

    Johnson P R, Andresen A, Collins A S, Fowler A R, Fritz H, Ghebreab W, Kusky T, Stern R J. 2011. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 61(3): 167-232.

    [37]

    Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D, Jerram D A, Keller F, Meugniot C. 2004. Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell[J]. Journal of Petrology, 45(4): 793-834.

    [38]

    Kirstein L A, Peate D W, Hawkesworth C J, Turner S P, Harris C, Mantovani M S M. 2000. Early Cretaceous basaltic and rhyolitic magmatism in southern Uruguay associated with the opening of the South Atlantic[J]. Journal of Petrology, 41(9): 1413-1438.

    [39]

    Le Maitre R W. 1989. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences, Subcommission on the systematics of igneous Rocks[M]. Oxford, UK: Blackwell ScientificPublications, 1-193.

    [40]

    Lindberg B, Eklund O. 1988. Interactions between basaltic and granitic magmas in a Svecofennian postorogenic granitoid intrusion, Aland, Southwest Finland[J]. Lithos, 22(1): 13-23.

    [41]

    Litvinovsky B A, Jahn B, Zanvilevich A N, Saunders A, Poulain S, Kuzmin D V, Reichow M K, Titov A V. 2002. Petrogenesis of syenite-granite suites from the Bryansky Complex (Transbaikalia, Russia); implications for the origin of A-type granitoid magmas[J]. Chemical Geology, 189(1-2): 105-133.

    [42]

    Liu Y S, Hu Z C, Gao S, Güenther D, Xu Juan, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43.

    [43]

    Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen; U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571.

    [44]

    Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546.

    [45]

    Loiselle M C Wones D R. 1979.Characteristics and origin of anorogenic granites[J]. Geological Society of America Abstracts with Programs, 11(7): 468.

    [46]

    Ludwig K R. 2004. Isoplot/Ex, a geochronological toolkit for Microsoft Excel, Version 3.00. [J]. Berkeley Geochronology Center, Berkeley, CA.

    [47]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643.

    [48]

    Marty B, Pik R, Gezahegn Y. 1996. Helium isotopic variations in Ethiopian plume lavas; nature of magmatic sources and limit on lower mantle contribution[J]. Earth and Planetary Science Letters, 144(1-2): 223-237.

    [49]

    Meshesha D, Shinjo R. 2007. Crustal contamination and diversity of magma sources in the northwestern Ethiopian volcanic province[J]. Journal of Mineralogical and Petrological Sciences, 105(5): 272-290.

    [50]

    Meshesha D, Shinjo R. 2008. Rethinking geochemical feature of the Afar and Kenya mantle plumes and geodynamic implications[J]. Journal of Geophysical Research, 113, B09209.

    [51]

    Patiño Douce A E. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 25(8): 743-746.

    [52]

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983.

    [53]

    Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81.

    [54]

    Peng Z X, Mahoney J J. 1995. Drillhole lavas from the northwestern Deccan Traps, and the evolution of Réunion hotspot mantle[J]. Earth and Planetary Science Letters, 134: 169-185.

    [55]

    Pik R, Deniel C, Coulon C, Yirgu G, Hofmann C, Ayalew D. 1998. The northwestern Ethiopian Plateau flood basalts; classification and spatial distribution of magma types[J]. Journal of Volcanology and Geothermal Research, 81(1-2): 91-111.

    [56]

    Reichow M K, Saunders A D, White R V, Al’Mukhamedovb A I and Medvedev A Y. 2005. Geochemistry and petrogenesis of basalts from the West Siberian Basin: An extension of the Permo–Triassic Siberian Traps, Russia[J]. Lithos, 79(3-4): 425-452.

    [57]

    Riley T R, Leat P T, Pankhurst R J, Harris C. 2001. Origins of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting[J]. Journal of Petrology, 42(6): 1043-1065.

    [58]

    Ritsema J, Heijst V H J, Woodhouse J H. 1999. Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland[J]. Science, 286(5446): 1925-1928.

    [59]

    Rooney T, Furman T, Bastow I, Ayalew D, Yirgu G. 2007. Lithospheric modification during crustal extension in the Main Ethiopian Rift[J]. Journal of Geophysical Research, 112, B10201.

    [60]

    Schilling J G. 1973. Afar Mantle Plume:Rare Earth Evidence[J]. Nature, 242: 2-5.

    [61]

    Sheth H C, Pnande K, Bhhutani R. 2001. 40Ar-39Ar ages of Bombay trachytes: Evidence for a Palaeocene[J]. Geophysical Research Letters, 28(18): 3513-3516.

    [62]

    Skjerlie K P, Johnston A D. 1992. Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites[J]. Geology, 20: 263-266.

    [63]

    Stern R J, Ali K A, Liegeois J P, Johnson P R, Kozdroj W, Kattan F H. 2011. Distribution and significance of pre-Neoproterozoic zircons in juvenile Neoproterozoic igneous rocks of the Arabian-Nubian Shield[J]. American Journal of Science, 310(9): 791-811.

    [64]

    Stewart K, Rogers N. 1996. Mantle plume and lithosphere contributions to basalts from southern Ethiopia[J]. Earth and Planetary Science Letters, 139(1-2): 195-211.

    [65]

    Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.

    [66]

    Taylor S R, Mclennan S M. 1981. The composition and evolution of the continental crust; rare earth element evidence from sedimentary rocks[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 301(1461): 381-399.

    [67]

    Teklay M, Asmerom Y, Toulkeridis T. 2005. Geochemical and Sr-Nd isotope ratios in Cenozoic basalts from Eritrea:Evidence for temporal evolution from low-Ti tholeiitic to high-Ti alkaline basalts in Afro-Arabian continental flood basalt province[J]. Periodico di Mineralogia, 74(3): 167-182.

    [68]

    Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419.

    [69]

    Whalen J B, Jenner G A, Longstaffe F J, Hegner E. 1996. Nature and evolution of the eastern margin of lapetus: geochemical and isotopic constraints from Siluro-Devonian granitoid plutons in the New Brunswick Appalachians[J]. Canadian Journal of Earth Sciences, 33(2): 140-155.

    [70]

    Xu Y G, Luo Z Y, Huang X L, He B, Xiao L, Xie L W and Shi Y R. 2008. Zircon U–Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochimica et Cosmochimica Acta, 72(13): 3084-3104.

    [71]

    Yan J M, Sun G S, Sun F Y, Li L, Li H R, Gao Z H, Hua L, Yan Z P. 2019. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis[J]. Journal of Earth Science, 30(2): 335-347.

    [72]

    Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr–Nd–Hf isotopic evidence[J]. Lithos, 89(1-2): 89-106.

  • 加载中
计量
  • 文章访问数:  1667
  • PDF下载数:  137
  • 施引文献:  0
出版历程
收稿日期:  2021-12-23
修回日期:  2022-01-22

目录