3D Engineering Geological Modeling of the Nansha Core Area of Guangzhou Based on Multi-source Data Coupling
-
摘要: 安全合理开发利用城市地下空间需要城市地质调查工作提供支撑,三维工程地质建模是将城市地下空间的地质调查成果可视化呈现以便于实施地下空间规划、建设决策的重要手段。作为数据源的各类地质钻孔及其他相关数据具有来源不同、格式各异的特点,给数据建模和可视化呈现造成一定困难,而基于多源数据融合的三维工程地质建模能够解决建模效率低、可视化效果差的模型建设现状。作为粤港澳全面合作示范区和区域性综合服务中心,广州南沙核心区集聚高水平对外开放和经济深度融合的高端产业,其规模化建设急需开展三维工程地质建模,以实现空间利用高效化。本文通过原始数据处理、三维空间集成和多源数据融合三个步骤实现了对多源钻孔数据和其它信息的有效集成,依托南沙三维地质结构模型及信息平台搭建地质空间数据库,通过离散光滑插值(DSI)技术构建了三维曲面,并采用半自动建模方式,依据强制约束条件建立以钻孔为主、其它信息为辅的三维工程地质模型。模型应用于南沙核心区地下空间开发利用和地铁路线规划,提出了软土地面沉降的工程处理建议,助力建设“透明南沙”,为更加安全合理开发利用城市地下空间提供了科学依据。Abstract: Further exploitation and utilization of urban underground space requires continuous in-depth geological investigation, and three-dimensional (3D) modeling in engineering geology is an important approach to visualize the underground space. Due to the variable sources and formats of geological boreholes and associated data, it is difficult to model and visualize the data. The 3D modeling in engineering geology on the basis of fusion of multi-source data, however, can solve the problems of low modeling efficiency and poor visualization effect. As an integrated service center and demonstration area for the Guangdong-Hong Kong-Macao Greater Bay Area, the Nansha core area, gathered with high-end industries with high-level opening up and deep economic integration, has an urgent need for high-efficiency utilization of space through 3D engineering geological modeling and its scaling up. In this paper, the collected multi-source data was integrated through processing of raw data, 3D spatial integration, and fusion, and then a geo-spatial database was established. The 3D curved surface was constructed by using the discrete smooth interpolation (DSI) method, whereas the 3D engineering geological model was established following the semi-automatic modeling method. This model has been applied to the exploitation and utilization of the underground space such as the subway route planning in the Nansha core area, and suggestions for engineering treatment of land subsidence of soft soil were put forward. Overall, the model aids to build "Transparent Nansha" and provides the scientific basis for safer and more reasonable development and utilization of the Nansha urban underground space.
-
Key words:
- Multi-source data fusion /
- Engineering geology /
- 3D modeling /
- the Nansha core area
-
-
[1] 陈 松, 陈长敬, 黄理善,赵信文, 曾 敏.2020. 音频大地电磁测深反演南沙新区地下空间岩性构造特征[J]. 华南地质,36(3):246-253.
[2] 陈小月.2018. 广州市南沙区软土地面沉降特征及城市防灾减灾的建议[J]. 地质灾害与环境保护,29(2):17-22.
[3] 陈运坤, 高 磊, 屈尚侠.2020. 广州南沙区软土工程特性及软土分区评价[J]. 科技经济导刊, 28(36):102-103.
[4] 何 静, 何晗晗, 郑桂森, 刘 予, 周圆心, 肖景泽, 王纯君.2019. 北京五环城区浅部沉积层的三维地质结构建模[J]. 中国地质,46(2):244-254.
[5] 林良俊, 李亚民, 葛伟亚, 胡秋韵, 李晓昭, 李 云, 孟 晖,张礼中, 杨建锋.2017. 中国城市地质调查总体构想与关键理论技术[J]. 中国地质, 44(6):1086-1101.
[6] 刘 娜, 谢英情, 楚 亮, 毛 燕, 闵照旭.2008. 基于钻孔数据的三维地质空间插值方法对比研究[J]. 地震研究,31(S2):619-622+646.
[7] 屈红刚, 潘懋, 刘学清, 于春林.2015. 城市三维地质建模及其在城镇化建设中的应用[J]. 地质通报,34(7):1350-1358.
[8] 申 健, 徐大伟, 蔡雄翔.2008. 基于钻孔数据的滑坡三维地质建模研究[J]. 东华理工大学学报( 自然科学版),31(2):127-130.
[9] 孙 敏, 马蔼乃, 陈 军.2002. 三维城市模型的研究现状评述[J]. 遥感学报,6(2):155-160+168.
[10] 唐丙寅, 吴冲龙, 李新川, 陈麒玉, 慕洪涛.2015. 一种基于钻孔地质数据的快速递进三维地质建模方法[J]. 岩土力学,36(12):3633-3638.
[11] 万晓明, 凌丹丹, 马国玺, 马宇梅, 万小红.2020. 基于GIS的三维水文地质建模及应用——以咸阳市为例[J]. 华南地质与矿产,36(1):72-79.
[12] 王 瑶, 张像源, 陈文杰.2017. 基于多源钻孔数据的工程地质三维建模方法及应用[J]. 中国矿业, 26(S2):387-390.
[13] 吴志春, 郭福生, 林子瑜, 侯曼青, 罗建群.2016. 三维地质建模中的多源数据融合技术与方法[J]. 吉林大学学报(地球科学版),46(6):1895-1913.
[14] 许 珂, 徐亚杏.2018. 基于MapGIS-K9 软件的城市三维地质建模方法探讨——以武汉市为例[J]. 华南地质与矿产,34(3):244-252.
[15] 张 源.2021. 城市三维地质建模方法研究[J]. 矿山测量,49(1):65-68+88.
[16] 张夏林, 吴冲龙, 周 琦, 翁正平, 袁良军, 朱福康, 李章林,张志庭, 杨炳南, 赵亚涛.2020. 贵州超大型锰矿集区的多尺度三维地质建模[J]. 地球科学,45(2):634-644.
[17] 钟嘉毅.2018. 粤港澳大湾区建设背景下广州深化战略定位的思考——以南沙为例[J]. 时代金融,(6):60-61.
[18] 周念清, 杨浩博, 杨 磊, 刘先林.2020. EVS 耦合地层-岩性三维地质建模方法在南宁地铁工程中的应用[J]. 隧道建设(中英文),40(2):238-245.
[19] 朱良峰, 吴信才, 刘修国, 尚建嘎.2004. 基于钻孔数据的三维地层模型的构建[J]. 地理与地理信息科学,20(3):26-30.
[20] Alexander D H, Hitl E R, Smoot J L, Smith D R, Waldo K, Cerny B A, Krupka K M. 1990. Three-Dimensional Visual izat ion: Breakthrough in Analysis and Communication of Technical Information for Nuclear Waste Management[J]. MRS Online Proceedings Library, 212:797-808.
[21] Carlson E. 1987. Three Dimensional Conceptual Modeling of Subsurface Structures[J]. Technical Papers of ASPRS/AGSM, Annual Convention, (4):188-200.
[22] Conde F C, Martínez S G, Ramos J L, Martínez R F, Colonia A M. 2014. Building a 3D geomodel for water resources management: case study in the Regional Park of the lower courses of Manzanares and Jarama Rivers (Madrid, Spain)[J]. Environmental Earth Sciences, 71(1):61-66.
[23] Guo J T, Wang X L, Wang J M, Dai X W, Wu L X, Li C L, Li F D, Liu S J, Jessell M W. 2021. Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm[J]. Engineering Geology, 284:106047.
[24] Hou W S, Yang L, Deng D C, Ye J, Clarke K, Yang Z J, Zhuang W M, Liu J X, Huang J C.2016. Assessing quality of urban underground spaces by coupling 3D geological models: The case study of Foshan city, South China[J]. Computers and Geosciences, 89:1-11.
[25] Houiding S W. 1994. 3D geoscience modeling-computer techniques for geological characterization[M]. Berlin: Springer-Verlag.
[26] Liang S H, Zhou S Z. 2015. Experimental research about mechanical properties and microscopic structures of Nansha soft soil stabilised with slag and cement[J]. Materials Research Innovations, 19(sup10):S10-69-S10-74.
[27] Mallet J L. 1989. Discrete smooth interpolation[J]. ACM Transactions on Graphics (TOG), 8(2):121-144.
[28] Mallet J L. 1992. Discrete smooth interpolation in geometric modelling[J]. Computer-Aided Design, 24(4):178-191.
[29] Naji H S, Khalil M K. 2012. 3D geomodeling of the Lower Cretaceous oil reservoir, Masila oil field, Yemen[J]. Arabian Journal of Geosciences, 5(4):723-746.
[30] Pan D D, Xu Z H, Lu X M, Zhou L Q, Li H Y. 2020. 3D scene and geological modeling using integrated multisource spatial data: Methodology, challenges, and suggestions[J]. Tunnelling and Underground Space Technology,100:103393.
[31] Qiao F, Bo J S, Qi W H, Wang L, Chang C Y, Zhang Z P, Wang J. 2020. Study on the dynamic characteristics of soft soil[J]. Royal Society of Chemistry Advances, 10(8):4630-4639.
[32] Sun H, Zhang Q, Zhao C Y, Yang C S, Sun Q F, Chen W R.2017. Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PSInSAR technique[J]. Remote Sensing of Environment, 188:73-84.
[33] Tan X Q, Liu Y Y, Zhou X Z, Liu J D, Zheng R C, Jia C. 2019. Multi-parameter quantitative assessment of 3D geological models for complex fault-block oil reservoirs[J]. Petroleum Exploration and Development, 46(1):194-204.
[34] Velasco V, Gogu R, Vázquez-Su è E, Garriga A, Ramos E, Riera J, Alcaraz M. 2013. The use of GIS-based 3D geological tools to improve hydrogeological models of sedimentary media in an urban environment[J]. Environmental Earth Sciences, 68(8):2145-2162.
[35] Wang G W, Huang L. 2012. 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China[J]. Geoscience Frontiers, 3(4):483-491.
-
计量
- 文章访问数: 1021
- PDF下载数: 192
- 施引文献: 0