Zircon U-Pb Geochronology, Hf Isotopic Composition of the Hongfengdui Granitic Intrusion in Jiamao Area of Hainan Island and Its Tectonic Setting Implications
-
摘要: 本文在野外地质调查的基础上,对海南加茂地区红峰队细中粒黑云母正长花岗岩体进行锆石年代学、Hf同位素及地球化学等特征的深入研究,以揭示该岩体形成的构造环境。结果显示,红峰队花岗岩体锆石LA-ICP-MS U-Pb年龄为259.5±1.3 Ma,形成于晚二叠世;具有高硅(SiO2=72.26%~75.69%)、富碱(K2O+Na2O=8.51%~9.18%),高钾(K2O/Na2O=1.13~1.7),贫CaO(0.38%~0.75%)和P2O5(0.01%~0.02%)等地球化学特征,A/CNK值为0.99~1.08,属于准铝质-弱过铝质花岗岩;富集Rb、Th、U、K、Pb、Nd、Zr、Hf、Sm和轻稀土,明显亏损Ba、Nb、Ta、Sr、P、Eu、Ti,具强烈的负Eu异常;锆石饱和温度也较低(767~796℃);显示该岩体属于高分异I型花岗岩;εHf(t)值变化较小(+3.0 ~ +7.3),反映了其岩浆来源较为均一。红峰队岩体来源于新生地壳的部分熔融,并且发生了较高程度的分离结晶,可能形成于华南与印支块体的碰撞后伸展环境。Abstract: A large number of intrusive rocks are distributed in the Jiamao area of Hainan Island. Limited by the degree of research, the predecessors have changed the formation age of the Hongfengdui granitic intrusion mass many times. This article in-depth study zircon chronology, Hf isotopes and geochemistry of the Hongfengdui granitic intrusion on the basis of field geological surveys in order to reveal the tectonic setting of the Hongfengdui granitic formation.The results show that the LA-ICP-MS zircon U-Pb age is 259.5±1.3Ma, with high Si (SiO2=72.26-75.69 wt%), rich alkali (K2O+Na2O=8.51-9.18 wt%), high K(K2O/Na2O=1.13~1.7), low CaO(0.38%~0.75%)and P2O5(0.01%~0.02%), belonging to the subalkaline high-K calc-alkaline series. While the A/CNK value is 0.99~1.08, belonging to quasi-aluminous to weakly peraluminous granite. On trace and REE aspects, the rocks are enriched in Rb, Th, U, K, Pb, Nd, Zr, Hf, Sm and LREE, obviously depleted in Ba,Nb,Ta,Sr,P,Eu and Ti with strong negative Eu anomaly and lower zircon saturation temperatures(767~796℃). Integrated geological and geochemical data suggest that Hongfengdui granitic should be genetically ascribed to highly fractionated I-type granites. Zircon Hf isotopic compositions of the granites are lowly variable with εHf(t) values ranging from +3.0 to +7.3, showing that magma source is relatively uniform. Geochemical characteristics indicate that the Hongfengdui granitic was generated from partial melting of mafic crust, and a high degree of fractionation occurred during the magma’s evolution, the granitic intrusion may be formed in the collision of the South China and Indosinian blocks and belonged to the post-collision tectonic environment, combined with other Late Permian granite features in the region, which proposes the boundary between the tectonic setting of extrusion and the tectonic setting of extension is probably to be accurate to about 259Ma about Hercynian-Indosinian magmatic activity
-
Key words:
- zircon U- Pb dating /
- Hf isotope /
- geochemistry /
- the Hongfengdui granite /
- Hainan Island
-
-
[1] 陈新跃,王岳军,范蔚茗,张飞飞,彭头平,张玉芝.2011.海南五指山地区花岗片麻岩锆石LA-ICP-MS U-Pb年代学特征及其地质意义[J].地球化学, 40(5):454-463.
[2] 芶琪钰,钱 鑫,何慧莹,张玉芝,王岳军.2019.海南荔枝沟中三叠世酸性火山岩年代学、地球化学特征及其构造意义[J].地球科学,44(4):1357-1370.
[3] 李江海,穆 剑.1999.我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约[J].地质科学,34(3):259-272.
[4] 李孙雄,云 平,范 渊,周进波.2005.海南岛琼中地区琼中岩体锆石U-Pb年龄及其地质意义[J].大地构造与成矿学,29(2):227-241.
[5] 李孙雄,魏昌欣,汪焰华,陈方颖.2013.海南东南部韧性剪切变形带锆石U-Pb年代学特征及其地质意义[J].地质力学学报,19(3):267-274.
[6] 李孙雄,云平,林义华,等.2017.中国区域地质志•海南志[M].北京:地质出版社,280-450.
[7] 林 强,方占仁.1988.花岗质岩石中微粒交生体的成因研究[J].岩石学报,4(2): 42-49+98-99.
[8] 路远发,李文霞.2021a. CIPW标准矿物计算方法与程序设计[J].华南地质,37(3):348-360.
[9] 路远发,李文霞.2021b.花岗岩类自然矿物岩石化学换算及程序设计[J].华南地质,37(4):445-457.
[10] 马鹏飞,夏小平,徐 健,崔泽贤,蒙均桐,周美玲.2021.腾冲早白垩世花岗岩的高分异成因及其构造意义[J].岩石学报,37(4):1177-1195.
[11] 邱检生,肖 娥,胡 建,徐夕生,蒋少涌,李 真.2008.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报, 24(11):2468-2484.
[12] 孙载波,胡绍斌,周 坤,赵 枫,李小军,包佳凤,张小凡,佘中明.2020.南澜沧江带曼兵岛弧花岗岩成因与构造启示:元素地球化学、锆石U-Pb年代学及Hf同位素约束[J].岩石学报, 36(5):1389-1408.
[13] 唐立梅.2010.海南岛中生代两期构造伸展作用的岩浆记录及其大陆动力学意义[D].浙江大学博士学位论文.
[14] 唐立梅,陈汉林,董传万,杨树锋,沈忠悦,程晓敢,付璐露.2013.海南岛中三叠世造山后伸展作用:双峰式侵入岩的年代学及地球化学制约[J].中国科学:地球科学,43(3):433-445.
[15] 汪啸风,马大铨,蒋大海.1991.海南岛地质(三)——构造地质[M].北京:地质出版社,10-100.
[16] 王 楠,刘治博,宋 扬,郑卫红,李发桥,滕 磊.2020.西藏班戈地区早白垩世高分异花岗岩年代学及岩石成因[J].岩石学报,36(2):409-425.
[17] 王琦崧,张 静,曹双双,于立栋,孙海微.2020.甘肃马庄山地区花岗岩类的元素地球化学、U-Pb年代学及Nd-Hf同位素特征[J].岩石学报, 36(5):1445-1460.
[18] 温淑女,梁新权,范蔚茗,王岳军,池国祥,梁细荣,周 云,蒋 英.2013.海南岛乐东地区志仲岩体锆石U-Pb年代学、Hf同位素研究及其构造意义[J].大地构造与成矿学,37(2):294-307.
[19] 温淑女.2013.海南岛二叠纪—三叠纪岩浆作用的年代学与地球化学研究[D].中国科学院广州地球化学研究所博士学位论文,55-85.
[20] 吴福元,李献华,郑永飞,高 山.2007. Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23(2):185-220.
[21] 谢才富.2002.同构造花岗岩的一种显微构造标记[J].岩石矿物学杂志,21(2):179-185.
[22] 谢才富,朱金初,丁式江,张业明,付太安,李志宏.2006.琼中海西期钾玄质侵入岩的厘定及其构造意义[J].科学通报,51(16):1944-1954.
[23] 谢才富.2007.海南岛海西期同逆冲侵入岩组合的厘定及其构造意义[D].南京大学博士学位论文,77-100.
[24] 谢才富,马昌前,付建明,等.2009.华南过铝花岗岩与陆壳生长演化.//见:肖庆辉,王涛,邓晋福,等.著. 中国典型造山带花岗岩与大陆地球生长研究[M].北京:地质出版社,1-118.
[25] 许德如,马 驰,李鹏春,夏 斌,张玉泉.2006.海南岛变碎屑沉积岩锆石SHRIMP U-Pb年龄及地质意义[J].地质学报,81(3):381-393.
[26] 张业明,谢才富,付太安,李志宏.2005.三亚地体与琼中地体构造边界的直接证据[J].科学技术与工程, 5(20):1482-1483.
[27] 周红智,魏俊浩,石文杰,张松涛,陈加杰,张新铭,沈志远,王艺龙,曾闰灵.2020.东昆仑鄂拉山岩浆带晚三叠世后碰撞伸展:来自索拉沟高分异I型花岗岩的证据[J].地质科技通报,39(4):150-164.
[28] 周金城,王孝磊,邱检生.2008.江南造山带是否格林威尔期造山带?——关于华南前寒武纪地质的几个问题[J].高校地质学报,14(1):64-72.
[29] 周佐民,谢才富,徐 倩,高太飞.2011.海南岛中三叠世正长岩-花岗岩套的地质地球化学特征与构造意义[J].地质论评,57(4):515-531.
[30] Amelin Y, Lee D C, Halliday A N. 2000. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains [J]. Geochimica et Cosmochimica Acta, 64(24):4205-4225.
[31] Hu Z C, Liu Y S, Gao S, Liu W G, Zhang W, Tong X R, Lin L, Zong K Q, Li M, Chen H H, Zhou L, Yang L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 27(9): 1391.
[32] Hu Z C, Zhang W, Liu Y S, Gao S, Li M, Zong K Q, Chen H H, Hu S H. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis [J]. Analytical Chemistry, 87(2): 1152-1157.
[33] Jahn B M, Griffin W L, Windley B. 2000. Continental growth in the Phanerozoic: Evidence from Central Asia [J]. Tectonophysics, 328(1-2): vii-x.
[34] King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of alumious A-type granites from the Lachlan Fold Belt, Southeastern Australia [J]. Journal of Petrology, 38: 371-391.
[35] Li S B, He H Y, Qian X, Wang Y J, Zhang A M. 2018. Carboniferous arc setting in Central Hainan: geochronological and geochemical evidences on the andesitic and dacitic rocks [J]. Journal of Earth Science, 29(2): 265-279.
[36] Li X H, Li Z X, Li W X, Wang Y J. 2006. Initiation of the Indosinian orogeny in South China: Evidence for a Permian magmatic arc on Hainan Island [J]. The Journal of Geology, 114(3): 341-353.
[37] Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model [J]. Geology, 35(2): 179-182.
[38] Liu Y S, Hu Z C, Gao S, Gunther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 257(1): 34-43.
[39] Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths [J]. Journal of Petrology, 51(1-2): 537-571.
[40] Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel [R]. Berkeley Geochronology Center, California, Berkeley, 1-39.
[41] Middlemost E A K. 1994. Naming materials in the magmaigneous rock system [J]. Earth-Science Reviews, 37(3): 215-224.
[42] Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956-983.
[43] Peccerillo R, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey [J]. Contributions to Mineralogy and Petrology, 58(1):63-81.
[44] Vervoort J D, Patchett P J, Gehrels G E, Nutman A P. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes [J]. Nature, 379(6566):624-627.
[45] Vervoort J D, Patchett P J, Albarede F, Blichert-Toft J, Rudnick R, Downes H. 2000. Hf-Nd isotopic evolution of the lower crust [J]. Earth and Planetary Science Letters, 181(1-2):115-129.
[46] Wang Z L, Xu D R, Hu G C, Yu L L, Wu C J, Zhang Z C, Cai J X, Shan Q, Hou M Z, Chen H Y. 2015. Detrital zircon U-Pb ages of the Proterozoic metaclastic-sedimentary rocks in Hainan Province of South China: New constraints on the depositional time, source area, and tectonic setting of the Shilu Fe-Co-Cu ore district [J]. Journal of Asian Earth Sciences, 14(4): 1-19.
[47] Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types [J]. Earth and Planetary Science Letters, 64(2): 295-304.
[48] Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis [J]. Contributions to Mineralogy and Petrology, 95(4): 407-419.
[49] Zhang W, Hu Z C, Spectroscopy A. 2020. Estimation of Isotopic Reference Values for Pure Materials and Geological Reference Materials [J]. Atomic Spectroscopy, 41(3): 93-102.
[50] Zong K Q, Klemd R, Yuan Y, He Z Y, Guo J L, Shi X L, Liu Y S, Hu Z C, Zhang Z M. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 290: 32-48.
-
计量
- 文章访问数: 944
- PDF下载数: 59
- 施引文献: 0