The Metallogenic Material Sources of Permian Karst Bauxite in Pingguo Region, Guangxi
-
摘要: 桂西靖西-平果铝土矿带是我国重要的铝土矿产区之一,但是二叠纪喀斯特型铝土矿成矿物质来源尚不明确。本文在1∶5万区域地质调查基础上,通过碎屑锆石LA-(MC)-ICP-MS U-Pb定年和Hf同位素研究初步分析了平果那念矿区二叠纪喀斯特型铝土矿的成矿物质来源。结果显示,两个样品碎屑锆石具单一的峰值年龄,分别为259.0 Ma和256.5 Ma,与中晚二叠世之交的岩浆活动事件相对应。锆石εHf(t)值在−1.5 ~ −16.2之间,平均-6.2,Hf同位素二阶段模式年龄峰值均在1.7 Ga左右。结合该区远岸碳酸盐岩台地的古地理格局及铝土岩系中存在的毫米级长石斑晶假象和石英斑晶,推测平果地区二叠纪喀斯特型铝土矿的成矿物质可能来源于西南方向的古特提斯二叠纪岩浆弧成因火山灰。Abstract: The Jingxi-Pingguo bauxite belt in western Guangxi is an important bauxite production area in China, but the source of metallogenic materials of Permian karst bauxite is not clear. Based on the 1:50,000 regional geological survey, the LA-(MC) -ICP-MS U-Pb dating and Hf isotope study of detrital zircons are used to preliminarily analyze the metallogenic material sources of Permian karst bauxite in Pingguo Nanian mining area. The results show that the detrital zircons of the two samples have the single peak ages of 259Ma and 256.5Ma, respectively, corresponding to the magmatic events during the turn of the Middle and Late Permian. The yielded zircon εHf(t) values range from -1.5 to -16.2, with an average of -6.2, and the peak ages of the two-stage Hf model age are around 1.7Ga. Combined with the paleogeographic pattern of the carbonate platform in the far bank of the Pingguo area and the existence of millimeter-sized feldspar porphyry and quartz porphyry in the bauxite series, it is speculated that the metallogenic material of Permian karst bauxite in Pingguo area might have been derived from the volcanic ash of Paleo Tethys magmatic arc in the southwest.
-
Key words:
- bauxite /
- zircon age /
- Hf isotope /
- material source /
- Pingguo area, Guangxi
-
-
[1] 程顺波,刘阿睢,李荣志,韦义师,刘君豪,胥 明.2020.桂西二叠纪喀斯特型铝土矿豆鲕特征及成因[J]华南地质,36(3): 232-239.
[2] 程顺波,刘阿睢,崔 森,李荣志,韦义师.2021.桂西二叠纪喀斯特型铝土矿地质成矿过程[J].地球科学,46(8):2697-2710.
[3] 戴塔根,龙永珍,张起钻,胡 斌.2003.桂西某些铝土矿床稀土元素地球化学研究[J].地质与勘探,39(4):1-5.
[4] 戴塔根,龙永珍,张起钻,胡 斌.2007.桂西铝多金属矿床地质地球化学特征与成矿机理[J].地球科学与环境学报, 29(4): 345-350.
[5] 杜远生,黄 虎,杨江海,黄宏伟,陶 平,黄志强,胡丽沙,谢春霞.2013.晚古生代—中三叠世右江盆地的格局和转换[J].地质论评,59(1): 1-11.
[6] 范长智.1995.平果岩溶堆积型铝土矿及原生铝土矿矿床地质征及其成因[J].矿山地质, 16(1): 18-26.
[7] 广西地质矿产勘查局.1985.广西壮族自治区区域地质志[M].北京:地质出版社,212-241.
[8] 广西区域地质调查研究院.2016.广西壮族自治区区域地质志(第二册):沉积岩及沉积作用[R].822-1053.
[9] 侯莹铃,何 斌,钟玉婷.2014.桂西二叠系喀斯特型铝土矿成矿物质来源的新认识:来自合山组碎屑岩地球化学证据[J].大地构造与成矿学, 38(1):181-196.
[10] 李龚健,王庆飞,禹 丽,胡兆初,马 楠,黄钰涵.2013.哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约[J].岩石学报, 29(11):3883-3900.
[11] 李朋武, 高 锐, 管 烨, 李秋生.2009.古特提斯洋的闭合时代的古地磁分析:松潘复理石杂岩形成的构造背景[J].地球学报,30(1): 39-50.
[12] 李普涛,张起钻.2008.广西靖西县三合铝土矿稀土元素地球化学研究[J].矿产与地质,22(6):536-540.
[13] 廖思福.2000.平果岩溶堆积型铝土矿地质特征及成因探讨[J].广西地质,13(4):29-33.
[14] 刘长龄.1992.论铝土矿的成因学说[J].河北地质学院学报, 15(2): 195-204.
[15] 乔 龙. 2016.右江盆地及其周缘地区构造演化及铝土矿成矿作用[D].中国地质大学(北京)博士学位论文, 1-164.
[16] 秦建华,吴应林,颜仰基,朱忠发.1996.南盘江盆地海西-印支期沉积构造演化[J].地质学报,70(2): 99-107.
[17] 王 力,龙永珍,彭省临.2004.桂西铝土矿成矿物质来源的地质地球化学分析[J].桂林工学院学报,24(1):1-6.
[18] 王庆飞,邓 军,刘学飞,张起钻,李中明,康 微,蔡书慧,李 宁.2012.铝土矿地质与成因研究进展[J].地质与勘探, 48(3): 430-448.
[19] 吴福元,李献华,郑永飞,高 山.2007. Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23(2):185-220.
[20] 杨宗永,何 斌.2012.南盘江盆地中三叠统碎屑锆石地质年代学:物源及其地质意义[J].大地构造与成矿学,36(4):581-596.
[21] 张起钻.2011.桂西铝土矿成矿模式和勘查技术[D].中国地质大学(北京)博士学位论文,1-141.
[22] Bardossy G. 1982. Karst bauxites: Bauxite deposits on carbonate rock [M]. Amsterdam: Elsevier, 20-180.
[23] Brimhall G H, Lewis C J, Ague J J, Dietrich W E, Hampel J, Teague T, Rix P. 1988. Metal enrichment in auxites by deposition of chemically mature aeolian dust [J]. Nature, 333: 819-824.
[24] Deng J, Wang Q F, Yang S J, Liu X F, Zhang Q Z. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores [J]. Journal of Asian Earth Sciences, 37: 412-424.
[25] Hou Y L, Zhong Y T, Xu Y G, He B. 2017. The provenance of late Permian karstic bauxite deposits in SW China, constrained by the geochemistry of interbedded clastic rocks, and U-Pb-Hf-O isotopes of detrital zircons [J]. Lithos, 278-281: 240-254.
[26] Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 257: 34-43.
[27] Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel [M]. Berkeley Geochronology Center, California, Berkeley, 1-39.
[28] MacLean W H, Bonavia F F, Sanna G. 1997. Argillite debris converted to bauxite during karst weathering: Evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia [J]. Mineralium Deposita, 32: 607-616.
[29] MacLean W, Kranidiotis P. 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec [J]. Economical Geology, 82(4): 951-962.
[30] Mameli P, Mongelli G, Oggiano G, Dinelli E. 2007. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): Insights on conditions of formation and parental affinity [J]. International Journal of Earth Sciences, 96: 887-902.
[31] Mongelli G. 1993. REE and other trace elements in a granitic weathering profile from “Serre”, southern Italy [J]. Chemical Geology, 103: 17-25.
[32] Morelli F, Cullers R, Laviano R and Mongelli G. 2000. Geochemistry and palaeo-environmental significance of Upper Cretaceous clay-rich beds from the Peri-Adriatic Apulia Carbonate Platform, southern Italy [J]. Periodico di Mineralogia, 69:165-183.
[33] Ozlü N. 1985. New facts on diaspore genesis in the Akseki-Seydisehir bauxite deposit (Western Taures, Turkey) [J]. Travaux Du ICSOBA, 14-15:53-62.
[34] Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism [J]. Chemical Geology, 184: 123-138.
[35] Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions [J]. Earth and Planetary Science Letters, 219 (3-4): 311-324.
[36] Yu W C, Algeo T J, Du Y S, Zhang Q L, Liang Y P. 2016. Mixed volcanogenic-lithogenic sources for Permian bauxite deposits in Southwestern Youjiang basin, South China, and their metallogenic significance [J]. Sedimentary Geology, 341: 276-288.
[37] Zhong Y T, He B, Xu Y G. 2013. Mineralogy and geochemistry of claystones from the Guadalupian-Lopingian boundary at Penglaitan, South China: Insights into the pre-Lopingian geological events[J]. Journal of Asian Earth Sciences, 62: 438-462.
-
计量
- 文章访问数: 983
- PDF下载数: 136
- 施引文献: 0