Sedimentary Environment and Organic Matter Enrichment Mechanism from the Lower Carboniferous Tianeping Formation-Doulingao Formations in Lianyuan area, central Hunan Province
-
摘要: 湘中涟源地区下石炭统天鹅坪组-陡岭坳组是华南地区海相页岩气勘查新层系之一。为了探讨湘中涟源地区下石炭统天鹅坪组-陡岭坳组钙质页岩沉积环境与有机质富集机理,本文对该套页岩开展了有机碳含量、主量元素、微量元素与稀土元素等含量测试和地球化学特征分析。结果表明:V/(V+Ni)、Cu/Zn均指示天鹅坪组-陡岭坳组页岩发育于贫氧环境,生源Ba含量显示天鹅坪组-陡岭坳组沉积时期海水生产力水平较低,Al-Co-Mn反映了水体滞留程度呈现出季节性变化。对比气候、海平面变化趋势,发现古生产力、陆源碎屑物质输送、水体滞留程度受到气候波动驱使海平面变化的影响。综合对比沉积环境指标与TOC相关关系发现:陆源碎屑含量变化是天鹅坪组-陡岭坳组页岩有机质富集的主要控制因素。Abstract: The Lower Carboniferous Tianeping-Doulingao Formation in Lianyuan, central Hunan Province, is one of the new shale gas exploration target beds in South China. In order to discuss the organic matter enrichment mechanism and the sedimentary environment of the calcareous shale rocks in the Tianeping-Doulingao Formation, the total carbon content, major and trace elements contents, as well as rare earth elements of calcareous shale samples have been analyzed systematically. Based on the results of the ratio of V/(V+Ni) and Cu/Zn, the Tianeping-Doulingao shale has been deposited in a poor-oxygen environment. The Babio content suggested a lower paleo-productivity level. The Al-Co-Mn data reflected that the degree of water retention showed seasonal changes. Comparing the climate and the sea level trends, it is suggested that the paleo-productivity, terrigenous detrital transport and water retention have been affected by the sea level changes driven by climate fluctuations. The correlation of TOC and sedimentary environment index also indicates that the terrigenous detrital input has been a major controlling factor for Tianeping-Doulingao shale organic matter enrichment.
-
-
[1] 陈践发,张水昌,鲍志东,孙省利,吴庆余.2006.海相优质烃源岩发育的主要影响因素及沉积环境[J].海相油气地质,11(3):49-54.
[2] 陈林,张保民,陈孝红,蒋 恕,张国涛,李 海,陈 平,林卫兵.2021.湘中坳陷邵阳凹陷佘田桥组泥岩岩相及其成因演化[J].地球科学,46(4):1282-1294.
[3] 陈孝红,石万钟,田 巍,何红生,李 海.2022.湘中坳陷石炭系天鹅坪组富有机质页岩的形成与页岩气富集机理[J].中国地质,http://kns.cnki.net/kcms/detail/11.1167.P.20220111.1730.003.html
[4] 方朝刚,章诚诚,林 洪,韩 瑾,滕 龙,周道荣,李建青.2022.下扬子西南部前渊带晚奥陶世—早志留世黑色页岩沉积环境与有机质富集机理——以WDD1井为例[J].地球科学与环境学报,44(2):312-326.
[5] 李 浩,陆建林,李瑞磊,王保华,徐 文,左宗鑫,王 苗,刘娅昭.2017.长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J].地球科学,42(10):1774-1786.
[6] 李绪龙,张 霞,林春明,黄舒雅,李 鑫.2022.常用化学风化指标综述:应用与展望[J].高校地质学报,28(1):51-63.
[7] 沈 俊,施张燕,冯庆来.2011.古海洋生产力地球化学指标的研究[J].地质科技情报,30(2):69-77.
[8] 熊小辉,肖加飞.2011.沉积环境的地球化学示踪[J].地球与环境,39(3):405-414.
[9] 敬 乐,潘继平,徐国盛,马若龙,袁海锋,罗小平,吴昌荣.2012.湘中拗陷海相页岩层系岩相古地理特征[J].成都理工大学学报(自然科学版),39(2):215-222.
[10] 聂海宽,唐 玄,边瑞康.2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,30(4):484-491.
[11] 郄文昆,张雄华,蔡雄飞,张 扬.2007.华南地区石炭纪-早二叠世早期成冰期的地球生物学过程与烃源岩的形成[J].地球科学,32(6):803-810.
[12] 邵龙义.1997.湘中早石炭世沉积学及层序地层学[M].徐州:中国矿业大学出版社,6-7.
[13] 田 巍,陈孝红,李旭兵,岳 勇,李 海,刘 安.2021.湘中涟源凹陷下石炭统天鹅坪组页岩气成藏条件及主控因素[J].地质科技通报,40(5):54-63.
[14] 肖 斌,刘树根,冉 波,李智武,叶玥豪,韩雨樾.2021.四川盆地北缘五峰组和龙马溪组沉积构造格局研究[J].地球科学.46(7):2449-2465.
[15] 张金川,徐 波,聂海宽,汪宗余,林 拓.2008.中国页岩气资源勘探潜力[J].天然气工业,(6):136-140+159-160.
[16] 郑 淇.2021.河南淅川滔河盆地白垩纪古环境演变[D].兰州大学硕士学位论文,62-64.
[17] 祝庆敏,卢龙飞,潘安阳,陶金雨,丁江辉,刘旺威,黎茂稳.2021.湘西地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[J].石油实验地质,43(5):797-809.
[18] Algeo T J, Lyons T W. 2006. Mo-total Organic Carbon Covariation in Modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions [J]. Paleoceanography, 21(1): 1-23.
[19] Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on Molybdenum–Uranium covariation [J]. Chemical Geology, 268(3): 211-225.
[20] Bai Y Y, Liu Z J, Sun Pi C, Liu R, Hu X F, Zhao H Q, Xu Y B. 2015. Rare earth and major element geochemistry of Eocene Fine-grained Sediments in oil shale- and coal-bearing layers of the Meihe basin, northeast China [J]. Journal of Asian Earth Sciences, 97: 89-101.
[21] Buggisch W, Joachimski M M, Sevastopulo G, Morrow J R. 2008. Mississippian δ13Ccarb and conodont apatite δ18O records — Their relation to the Late Palaeozoic Glaciation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 273-292.
[22] Canfield D E. 1994. Factors influencing organic carbon preservation in marine sediments [J]. Chemical Geology, 114: 315-329.
[23] Chen C, Mu C L, Zhou K K, Liang W, Ge X Y, Wang X P, Wang Q Y, Zheng B S. 2016. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China [J]. Marine And Petroleum Geology, 76: 159-175.
[24] Chen L, Jiang S, Chen P, Chen X H, Zhang B M, Zhang G T, Lin W B, Lu Yong-chao. 2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area, China [J]. Marine And Petroleum Geology, 124: 104809.
[25] Dymond J, Suess E, Lyle M. 1992. Barium in deep sea sediment: A geochemical proxy for paleoproductivity [J]. Paleoceanography, 7:163-181.
[26] Gallego-Torres D, Martínez-Ruiz F, Paytan A, Jiménez-Espejo F J, Ortega-Huertas M. 2007. Pliocene–Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2-4): 424-439.
[27] Kevin M B, George J G, ALAN R C, Paul J M, Toni J A S. 2005. Production, Destruction, and Dilution—The Many Paths to Source-Rock Development [M]. SEPM Special Publications, 82: 61-101.
[28] Mort H, Jacquat O, Adatte T, Steinmann P, Föllmi K, Matera V, Berner Z, Stüben D. 2007. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation [J]? Cretaceous Research, 28(4): 597-612.
[29] Nance W B, Taylor S R. 1976. Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks [J]. Geochimica et Cosmochimica Acta, 40(12): 1539-1551.
[30] Panahi A, Rainbrid R H,Young R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada [J]. Geochimica et Cosmochimica Acta, 64(13): 2199-2220.
[31] Rowe H D, Loucks R G, Ruppel S C, Rimmer S M. 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction [J]. Chemical Geology, 257(1-2): 16-25.
[32] Sageman B B, Murphy A E, Werne J P, Ver Straeten C A, Hollander D J, Lyons T W. 2003. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin [J]. Chemical Geology, 195(1-4): 229-273.
[33] Tan Z Z, Lu S F, Li W H, Zhang Y Y, He T H, Jia W L, Peng P A. 2019. Climate-driven variations in the depositional environment and organicmatter accumulation of lacustrine mudstones: Evidence from organic andinorganic geochemistry in the Biyang Depression, Nanxiang Basin, China [J]. Energy & Fuels, 33(8): 6946-6960.
[34] Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution [M]. Oxford, Britain: Blackwell Scientific Publication, 117-140.
[35] Sweere T, van den Boorn S, Dickson A J, Reichart G J. 2016. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations [J]. Chemical Geology, 441: 235-245.
[36] Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 232(1-2): 12-32.
[37] Wilde P, Quinby-hunt M S, Erdtmann B. 1996. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies [J]. Sedimentary Geology, 101: 43-53.
[38] Yao L, Qie W K, Luo G M, Liu J S, Algeo T J, Bai X, Yang B, Wang X D. 2015. The TICE event: Perturbation of carbon–nitrogen cycles during the mid-Tournaisian (Early Carboniferous) greenhouse–icehouse transition[J]. Chemical Geology, 401: 1-14.
-
计量
- 文章访问数: 607
- PDF下载数: 91
- 施引文献: 0