湘中涟源地区下石炭统天鹅坪组-陡岭坳组沉积环境与有机质富集机理

王 平, 陈孝红, 田巍, 李培军, 刘 安. 2022. 湘中涟源地区下石炭统天鹅坪组-陡岭坳组沉积环境与有机质富集机理. 华南地质, 38(4): 626-637. doi: 10.3969/j.issn.2097-0013.2022.04.005
引用本文: 王 平, 陈孝红, 田巍, 李培军, 刘 安. 2022. 湘中涟源地区下石炭统天鹅坪组-陡岭坳组沉积环境与有机质富集机理. 华南地质, 38(4): 626-637. doi: 10.3969/j.issn.2097-0013.2022.04.005
WANG Ping, CHEN Xiao-Hong, TIAN Wei, LI Pei-Jun, LIU An. 2022. Sedimentary Environment and Organic Matter Enrichment Mechanism from the Lower Carboniferous Tianeping Formation-Doulingao Formations in Lianyuan area, central Hunan Province. South China Geology, 38(4): 626-637. doi: 10.3969/j.issn.2097-0013.2022.04.005
Citation: WANG Ping, CHEN Xiao-Hong, TIAN Wei, LI Pei-Jun, LIU An. 2022. Sedimentary Environment and Organic Matter Enrichment Mechanism from the Lower Carboniferous Tianeping Formation-Doulingao Formations in Lianyuan area, central Hunan Province. South China Geology, 38(4): 626-637. doi: 10.3969/j.issn.2097-0013.2022.04.005

湘中涟源地区下石炭统天鹅坪组-陡岭坳组沉积环境与有机质富集机理

  • 基金项目:

    中国地质调查局项目(DD20190558)

详细信息
    作者简介: 王平(1998-),男,硕士研究生,古生物学与地层学专业,主要研究方向为沉积地球化学,E-mail:2214213620@qq.com
    通讯作者: 陈孝红(1964-),男,研究员,主要从事地层古生物学研究与页岩气地质调查工作,E-mail:yccxiaohong@163.com
  • 中图分类号: P618.130.2;P534.45

Sedimentary Environment and Organic Matter Enrichment Mechanism from the Lower Carboniferous Tianeping Formation-Doulingao Formations in Lianyuan area, central Hunan Province

More Information
    Corresponding author: CHEN Xiao-Hong
  • 湘中涟源地区下石炭统天鹅坪组-陡岭坳组是华南地区海相页岩气勘查新层系之一。为了探讨湘中涟源地区下石炭统天鹅坪组-陡岭坳组钙质页岩沉积环境与有机质富集机理,本文对该套页岩开展了有机碳含量、主量元素、微量元素与稀土元素等含量测试和地球化学特征分析。结果表明:V/(V+Ni)、Cu/Zn均指示天鹅坪组-陡岭坳组页岩发育于贫氧环境,生源Ba含量显示天鹅坪组-陡岭坳组沉积时期海水生产力水平较低,Al-Co-Mn反映了水体滞留程度呈现出季节性变化。对比气候、海平面变化趋势,发现古生产力、陆源碎屑物质输送、水体滞留程度受到气候波动驱使海平面变化的影响。综合对比沉积环境指标与TOC相关关系发现:陆源碎屑含量变化是天鹅坪组-陡岭坳组页岩有机质富集的主要控制因素。
  • 加载中
  • [1]

    陈践发,张水昌,鲍志东,孙省利,吴庆余.2006.海相优质烃源岩发育的主要影响因素及沉积环境[J].海相油气地质,11(3):49-54.

    [2]

    陈林,张保民,陈孝红,蒋 恕,张国涛,李 海,陈 平,林卫兵.2021.湘中坳陷邵阳凹陷佘田桥组泥岩岩相及其成因演化[J].地球科学,46(4):1282-1294.

    [3]

    陈孝红,石万钟,田 巍,何红生,李 海.2022.湘中坳陷石炭系天鹅坪组富有机质页岩的形成与页岩气富集机理[J].中国地质,http://kns.cnki.net/kcms/detail/11.1167.P.20220111.1730.003.html

    [4]

    方朝刚,章诚诚,林 洪,韩 瑾,滕 龙,周道荣,李建青.2022.下扬子西南部前渊带晚奥陶世—早志留世黑色页岩沉积环境与有机质富集机理——以WDD1井为例[J].地球科学与环境学报,44(2):312-326.

    [5]

    李 浩,陆建林,李瑞磊,王保华,徐 文,左宗鑫,王 苗,刘娅昭.2017.长岭断陷下白垩统湖相烃源岩形成古环境及主控因素[J].地球科学,42(10):1774-1786.

    [6]

    李绪龙,张 霞,林春明,黄舒雅,李 鑫.2022.常用化学风化指标综述:应用与展望[J].高校地质学报,28(1):51-63.

    [7]

    沈 俊,施张燕,冯庆来.2011.古海洋生产力地球化学指标的研究[J].地质科技情报,30(2):69-77.

    [8]

    熊小辉,肖加飞.2011.沉积环境的地球化学示踪[J].地球与环境,39(3):405-414.

    [9]

    敬 乐,潘继平,徐国盛,马若龙,袁海锋,罗小平,吴昌荣.2012.湘中拗陷海相页岩层系岩相古地理特征[J].成都理工大学学报(自然科学版),39(2):215-222.

    [10]

    聂海宽,唐 玄,边瑞康.2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,30(4):484-491.

    [11]

    郄文昆,张雄华,蔡雄飞,张 扬.2007.华南地区石炭纪-早二叠世早期成冰期的地球生物学过程与烃源岩的形成[J].地球科学,32(6):803-810.

    [12]

    邵龙义.1997.湘中早石炭世沉积学及层序地层学[M].徐州:中国矿业大学出版社,6-7.

    [13]

    田 巍,陈孝红,李旭兵,岳 勇,李 海,刘 安.2021.湘中涟源凹陷下石炭统天鹅坪组页岩气成藏条件及主控因素[J].地质科技通报,40(5):54-63.

    [14]

    肖 斌,刘树根,冉 波,李智武,叶玥豪,韩雨樾.2021.四川盆地北缘五峰组和龙马溪组沉积构造格局研究[J].地球科学.46(7):2449-2465.

    [15]

    张金川,徐 波,聂海宽,汪宗余,林 拓.2008.中国页岩气资源勘探潜力[J].天然气工业,(6):136-140+159-160.

    [16]

    郑 淇.2021.河南淅川滔河盆地白垩纪古环境演变[D].兰州大学硕士学位论文,62-64.

    [17]

    祝庆敏,卢龙飞,潘安阳,陶金雨,丁江辉,刘旺威,黎茂稳.2021.湘西地区下寒武统牛蹄塘组页岩沉积环境与有机质富集[J].石油实验地质,43(5):797-809.

    [18]

    Algeo T J, Lyons T W. 2006. Mo-total Organic Carbon Covariation in Modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions [J]. Paleoceanography, 21(1): 1-23.

    [19]

    Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on Molybdenum–Uranium covariation [J]. Chemical Geology, 268(3): 211-225.

    [20]

    Bai Y Y, Liu Z J, Sun Pi C, Liu R, Hu X F, Zhao H Q, Xu Y B. 2015. Rare earth and major element geochemistry of Eocene Fine-grained Sediments in oil shale- and coal-bearing layers of the Meihe basin, northeast China [J]. Journal of Asian Earth Sciences, 97: 89-101.

    [21]

    Buggisch W, Joachimski M M, Sevastopulo G, Morrow J R. 2008. Mississippian δ13Ccarb and conodont apatite δ18O records — Their relation to the Late Palaeozoic Glaciation [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 273-292.

    [22]

    Canfield D E. 1994. Factors influencing organic carbon preservation in marine sediments [J]. Chemical Geology, 114: 315-329.

    [23]

    Chen C, Mu C L, Zhou K K, Liang W, Ge X Y, Wang X P, Wang Q Y, Zheng B S. 2016. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China [J]. Marine And Petroleum Geology, 76: 159-175.

    [24]

    Chen L, Jiang S, Chen P, Chen X H, Zhang B M, Zhang G T, Lin W B, Lu Yong-chao. 2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area, China [J]. Marine And Petroleum Geology, 124: 104809.

    [25]

    Dymond J, Suess E, Lyle M. 1992. Barium in deep sea sediment: A geochemical proxy for paleoproductivity [J]. Paleoceanography, 7:163-181.

    [26]

    Gallego-Torres D, Martínez-Ruiz F, Paytan A, Jiménez-Espejo F J, Ortega-Huertas M. 2007. Pliocene–Holocene evolution of depositional conditions in the eastern Mediterranean: Role of anoxia vs. productivity at time of sapropel deposition [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2-4): 424-439.

    [27]

    Kevin M B, George J G, ALAN R C, Paul J M, Toni J A S. 2005. Production, Destruction, and Dilution—The Many Paths to Source-Rock Development [M]. SEPM Special Publications, 82: 61-101.

    [28]

    Mort H, Jacquat O, Adatte T, Steinmann P, Föllmi K, Matera V, Berner Z, Stüben D. 2007. The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation [J]? Cretaceous Research, 28(4): 597-612.

    [29]

    Nance W B, Taylor S R. 1976. Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks [J]. Geochimica et Cosmochimica Acta, 40(12): 1539-1551.

    [30]

    Panahi A, Rainbrid R H,Young R H. 2000. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada [J]. Geochimica et Cosmochimica Acta, 64(13): 2199-2220.

    [31]

    Rowe H D, Loucks R G, Ruppel S C, Rimmer S M. 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction [J]. Chemical Geology, 257(1-2): 16-25.

    [32]

    Sageman B B, Murphy A E, Werne J P, Ver Straeten C A, Hollander D J, Lyons T W. 2003. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin [J]. Chemical Geology, 195(1-4): 229-273.

    [33]

    Tan Z Z, Lu S F, Li W H, Zhang Y Y, He T H, Jia W L, Peng P A. 2019. Climate-driven variations in the depositional environment and organicmatter accumulation of lacustrine mudstones: Evidence from organic andinorganic geochemistry in the Biyang Depression, Nanxiang Basin, China [J]. Energy & Fuels, 33(8): 6946-6960.

    [34]

    Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution [M]. Oxford, Britain: Blackwell Scientific Publication, 117-140.

    [35]

    Sweere T, van den Boorn S, Dickson A J, Reichart G J. 2016. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations [J]. Chemical Geology, 441: 235-245.

    [36]

    Tribovillard N, Algeo T J, Lyons T, Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update [J]. Chemical Geology, 232(1-2): 12-32.

    [37]

    Wilde P, Quinby-hunt M S, Erdtmann B. 1996. The whole-rock cerium anomaly: a potential indicator of eustatic sea-level changes in shales of the anoxic facies [J]. Sedimentary Geology, 101: 43-53.

    [38]

    Yao L, Qie W K, Luo G M, Liu J S, Algeo T J, Bai X, Yang B, Wang X D. 2015. The TICE event: Perturbation of carbon–nitrogen cycles during the mid-Tournaisian (Early Carboniferous) greenhouse–icehouse transition[J]. Chemical Geology, 401: 1-14.

  • 加载中
计量
  • 文章访问数:  607
  • PDF下载数:  91
  • 施引文献:  0
出版历程
收稿日期:  2022-07-30
修回日期:  2022-10-12

目录