Continual Separation of Rb, Sr, Sm, Nd Elements from Dissolved Fluorite and Accurate Determination of Sr-Nd Isotope Ratio by TIMS
-
摘要: 地质样品中Rb-Sr和Sm-Nd同位素传统分析方法是采用两份样品分别进行Rb-Sr和Sm-Nd分离。本文针对王水溶解后的萤石,采用Dowex 50×8阳离子交换树脂和P507离子交换柱的组合,对同一份萤石样品直接溶样,连续分离Rb、Sr、Sm、Nd,并采用该方法对国际标准样品BCR-2中的Rb、Sr、Sm、Nd元素进行分离,然后用表面热电离质谱法(TIMS)进行同位素组成测定。结果表明经该方法连续分离后的样品元素含量及同位素比值测定结果与标样的参考值在误差范围内一致。该方法不仅可以减少样品用量、缩短测试周期、节约成本,而且有效避免了样品的不均一性,对于矿物样品的同位素组成研究具有重要意义。
-
关键词:
- 萤石 /
- Rb、Sr、Sm、Nd同位素 /
- 一次溶样 /
- 连续分离 /
- Sr-Nd比值TIMS测定
Abstract: The traditional method of Rb-Sr and Sm-Nd isotope analysis in geological samples usually separates Rb, Sr, Sm and Nd elements from two solutions of the same sample respectively. This study, focused on fluorite dissolved in aqua regia, uses the combination of Dowex50 × 8 Cation exchange resin and HDEHP ion exchange column, and successfully separates the Rb, Sr, Sm and Nd elements continually from the solution. This method has been used on the international standard sample BCR-2 and the isotopic composition of Rb, Sr, Sm and Nd elements is determined by surface thermal ionization mass spectrometry (TIMS). The results show that the element contents and the isotope composition from the samples through the continuous separation are consistent with the reference value of the standard sample within the error. This method not only requires less sample and reagent consumption, but also produces higher efficiency, meanwhile effectively avoiding the heterogeneity of samples, which is especially useful for the study of the isotopic composition of mineral samples.-
Key words:
- fluorite /
- Rb-Sr isotope /
- Sm-Nd isotope /
- primary sample dissolution /
- continuous separation
-
-
[1] 方贵聪,王登红,陈毓川,黄 凡,王 岩,吴家旭,胡世辅.2020.南岭萤石矿床成矿规律及成因[J]. 地质学报,94(1):161-178.
[2] 郭 佳,易继宁,王 慧.2018.全球主要战略性矿产名录评价因素对比研究[J]. 现代矿业,34(12):1-5.
[3] 韩文彬,张文育,黄文明,葛广福,马承安,王玉荣.1991.萤石矿床地质及地球化学特征——以浙江武义矿田为例[M].北京:地质出版社.
[4] 李华芹,刘家齐,杜国民,魏 林.1992.内生金属矿床成矿作用年代学研究——以西华山钨矿为例[J].科学通报, 37(12):1109-1112.
[5] 李 雪,章子源,谢建强.2019.含氟环氧树脂的研究进展[J].中国胶粘剂,28(4):48-53.
[6] 李志昌,万建华,杜国民.1987.萤石Sm-Nd等时线[J].地质地球化学,15(9):67-68.
[7] 林长谦,陈 炜,陈长江,龙桃成,何秀红,季亚旗.2021. 十堰市郧阳区冀家沟地区萤石矿地质特征及找矿方向[J].资源环境与工程,35(2):162-166.
[8] 彭建堂,符亚洲,袁顺达,沈能平,张东亮. 2006.热液矿床中含钙矿物的Sm-Nd同位素定年[J].地质论评,52(5):662-667.
[9] 彭建堂,胡瑞忠,蒋国豪.2003.萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约[J].岩石学报, 19(4): 785-791.
[10] 许 成,黄智龙,漆 亮,李文博. 2001.萤石Sr、Nd同位素地球化学研究评述[J].地质地球化学,29(4):27-34.
[11] 杨红梅,路远发,段桂玲,吕 红,刘 焰,章丽娟,梅玉萍,马丽艳.2005.茶叶中铅同位素比值的测定方法[J].地球化学,34(4):373-378.
[12] 宗春蕾,袁洪林,戴梦宁.2012.一次溶样分离地质样品中Pb-Sr-Nd方法的可行性研究[J].岩矿测试,31(6):945-949.
[13] 张福良,何贤杰,杜轶伦,王珍珍,雷晓力,方一平,胡永达.2013.关于我国战略性新兴矿产几个重要问题的思考[J].中国矿业,22(10):7-11.
[14] 张利国,段桂玲,杨红梅,杨 梅,谭娟娟,段瑞春,邱啸飞,刘重芃.2014.玄武岩分相Sm-Nd内部等时线定年方法流程[J].岩矿测试,33(5):640-648.
[15] 张自超.1981.用铷锶等时线法测定年龄时样品中87Sr/86Sr比值的计算方法[J].中国地质科学院宜昌地质矿产研究所所刊,(4):107-110.
[16] 钟 温,尹 近,王艺霖,陈 卓,杜 胜.2020.湖北通城鸡笼山萤石矿地质特征及其成因分析[J].资源环境与工程,34(4):525-528.
[17] Bharadwaj A V S L S, Singh M, Niju S, Begum K M M, Anantharaman N. 2019. Optimization and modeling of biodiesel production using fluorite as a heterogeneous catalyst [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(15):1862-1878.
[18] Chakhmouradian A R Wall F. 2012. Rare Earth Elements: Minerals, Mines, Magnets (and More) [J]. Elements, 8(5):333-340.
[19] Chesley J T, Halliday A N, Scrivener R C. 1991. Samarium-Neodymium direct dating of fluorite mineralization [J]. Science, 252: 949-951.
[20] Chesley J T, Halliday A N, Kyser T K, Spry P G. 1994. Direct dating of mississippi valley-type mineralization: Use of Sm-Nd in fluorite[J]. Economic Geology, 89(5): 1192-1199.
[21] Galindo C, Pankhurst R J, Casquet C, Coniglio J, Baldo E, Rapela C W, Saavedra J.1997. Age, Sr- and Nd-Isotope Systematics, and Origin of Two Fluorite Lodes, Sierras Pampeanas, Argentina [J]. International Geology Review, 39(10): 948-954.
[22] Gysi A P, Williams-Jones A E. 2013. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reation path model [J]. Geochimica et Cosmochimica Acta, 122(1):324-352.
[23] Halliday A N, Shepherd T J, Dicken A P Chesley J T. 1990. Sm-Nd evidence for the age and origin of a Mississippi Valley Type ore deposit [J]. Nature, 344(6261): 54-56.
[24] Kempe U, Belyatsky B V, Krymsky R S, Kremenetsky A A, Ivanov P A. 2001. Sm-Nd and Sr isotope systematics of scheelite from the giant Au(-W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization [J]. Mineralium Deposita, 36(5): 379-392.
[25] Munoz M, Premo W R, Courjault-Radé P. 2005. Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France [J]. Mineralium Deposita, 39(8): 970-975.
[26] Raczek I, Stoll B, Hofmann A W, Jochum K P. 2001. High-Precision Trace Element Data for the USGS Reference Materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS [J]. Geostandards and Geoanalytical Research, 25(1): 77-86.
[27] Samson I M, Wood S A, Finucane K. 2004. Fluid Inclusion Characteristics and Genesis of the Fluorite-parisite Mineralization in the Snowbird Deposit, Montana [J]. Economic Geology, 99(8): 1727-1744.
[28] Yang Y H, Zhang H F, Chu Z Y, Xie L W, Wu F Y. 2010. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS [J]. International Journal of Mass Spectrometry, 290(2-3): 120-126.
-
计量
- 文章访问数: 644
- PDF下载数: 150
- 施引文献: 0