Meso-Cenozoic Uplift and Tectonic Expansion of the Bikou Block, Northwest Sichuan
-
摘要: 青藏高原东北缘的向东构造扩展特征是地质热点问题之一,为了精确厘定该扩展速率及变化特征,本文对碧口地块及其东西两侧地层的磷灰石和锆石样品开展了裂变径迹测定和分析。结果表明:磷灰石裂变径迹长度在11.5 ~ 12.6 μm之间,绝大部分磷灰石和锆石裂变径迹年龄分别为古近纪(66.9 ~ 45.4 Ma)和侏罗纪—早白垩世(201.5 ~ 105.9 Ma)。研究区热史演化总体上具有阶段性,其中碧口地块构造隆升具一致性,而东侧地区热史演化相似且明显滞后于碧口地块,即碧口地块在27 ~ 15 Ma之间急剧隆升,而东侧区域不同位置随后在12 Ma和4 Ma开始发生急剧构造隆升。这种构造隆升时间差异是因为碧口地块在随青藏高原地块向东南构造挤压过程中,构造应力向东南方向传递且发生构造扩展所致,构造扩展速率由西至东递减显著,由碧口地块内部的20 km/Ma逐渐降至四川盆地边缘的1.40 km/Ma。构造扩展速率受到地层岩性及构造变形样式等多种因素影响,碧口地块内部的构造扩展速率大约是东侧区域的12 倍,构造扩展至四川盆地边缘逐渐减弱并在盆地内消失。Abstract: The eastward tectonic expansion of the northeast margin of the Qinghai-Tibet Plateau is one of the important geological issues. In order to accurately determine the expansion rate and its variation, fission track measurement and analysis has been carried out on apatite and zircon samples from the strata of Bikou Block and its east and west sides, the results of which show that the fission track length of apatite is between 11.5 μm and 12.6 μm, and most of the fission track ages of apatite and zircon are distributed in Paleogene (45.4-66.9 Ma) and Early Jurassic -Cretaceous (105.9-201.5 Ma), respectively. The thermal history evolution can be generally phased, in which the tectonic uplift of Bikou Block is consistent, while the thermal history evolution in the east is similar and obviously lags behind Bikou Block, that is, Bikou block rises sharply between 27 Ma and 15 Ma, then the sharp tectonic uplift occurred at different locations in the eastern region betwteen 12 Ma and 4 Ma. This differential tectonic uplift is due to the tectonic stress transmitted to the southeast resulting in tectonic expansion in the process of tectonic compression of Bikou block with the Qinghai-Tibet Plateau Block to the southeast, and the tectonic expansion rate decreases significantly from west to east, from 20 km/Ma in the Bikou Block to 1.40 km/Ma in the edge of Sichuan Basin. The rate inside the Bikou Block is about 12 times that in the east, which is affected by many factors such as formation lithology and structural deformation styles. The tectonic expansion gradually weakened on the edge of Sichuan Basin and then disappeared.
-
Key words:
- apatite /
- zircon /
- fission track /
- tectonic expansion rate /
- the Bikou Block /
- Qinghai-Tibet Plateau
-
-
[1] 陈洪德,徐胜林,林良彪,侯明才,陈安清.2011.龙门山造山带晚三叠世构造隆升的分段性及层序充填响应[J].沉积学报,29(4):622-630.
[2] 陈竹新,贾东,张惬,魏国齐,李本亮,魏东涛,沈扬.2005.龙门山前陆褶皱冲断带的平衡剖面分析[J].地质学报,79(1):38-45.
[3] 陈竹新,贾东,魏国齐,李本亮,雷永良.2008.川西前陆盆地中— 新生代沉积迁移与构造转换[J]. 中国地质,35(3):472-481.
[4] 邓宾,何宇,黄家强,杨荣军,周政,赖冬,罗强,郑文鑫,李智武,刘树根.2019.龙门山褶皱冲断带扩展生长过程—基于低温热年代学模型证据[J]. 地质学报,93(7):1588-1600.
[5] 邓宾,何宇,黄家强,罗强,杨荣军,于豪,张静,刘树根.2021.前陆盆地形成与演化砂箱物理模拟启示—以四川盆地西部龙门山为例[J].石油与天然气地质,42(2):401-415.
[6] 丁汝鑫,周祖翼,王玮.2007.利用低温热年代学数据计算造山带剥露速率[J].地球科学进展,22(5):447-455.
[7] 段其发,曹亮,周云,吴年文,邹先武,方喜林.2022.扬子陆块南部新元古代煌斑岩锆石U-Pb 年龄及构造背景[J].华南地质,38(4):583-595.
[8] 范增辉,刘树根,范存辉,胡林辉,李文佳,米鸿,韩翀,韩小俊.2018.龙门山褶皱冲断带典型地震剖面平衡剖面恢复及构造演化分析[J].地质论评,64(2):347-360.
[9] 郝识杰,黄周传,王良书,徐鸣洁,米宁,于大勇.2020.青藏高原东北缘瑞利面波成像:射线理论与程函方程结果的比较[J].高校地质学报,26(6):712-720.
[10] 惠博.2021.扬子西北缘碧口地块新元古代构造演化[D].西北大学博士学位论文.
[11] 金文正,汤良杰,杨克明,万桂梅,吕志洲,余一欣.2007.川西龙门山褶皱冲断带分带性变形特征[J].地质学报,81(8):1072-1080.
[12] 李朝鹏.2021.青藏高原东北缘新生代扩展过程[D].中国地震局地质研究所博士学位论文.
[13] 李贞,郭飚,刘启元,陈九辉,李顺成,齐少华.2019.青藏高原东北缘上地幔多尺度层析成像[J].地球物理学报,62(4):1244-1255.
[14] 林锦荣,胡志华,陶意,王勇剑,王峰.2019.相山矿田邹家山铀矿床成矿热事件的锆石裂变径迹年龄响应[J].铀矿地质,35(4):35(4):193-198.
[15] 林茂炳,吴山.1991.龙门山推覆构造变形特征[J].成都地质学院学报,18(1):46-54.
[16] 刘康,王伟涛,赵旭东,庞建章,俞晶星.2020.青藏高原东北缘柴达木盆地红沟剖面物源分析及其构造意义[J].地质学报,94(3):716-740.
[17] 刘铁庚,叶霖.1999.碧口群形成的地质构造环境探讨[J].矿物学报,19(4):446-452.
[18] 骆金诚,赖绍聪,秦江锋,胡瑞忠.2011.扬子板块西北缘碧口地块南一里花岗岩成因研究[J]. 地球学报,32(5):559-569.
[19] 罗梦,朱文斌,郑碧海,朱晓青.2012.库车盆地中新生代构造演化磷灰石裂变径迹证据[J].地球科学,37(5):893-902.
[20] 罗强,何宇,黄家强,张静,梁霄,于豪,杨荣军,邓宾.2020.川西北前陆扩展砂箱物理模拟及其深层晚期扩展变形特征[J].石油实验地质,42(6):1031-1040.
[21] 宁蒙.2015.青藏高原东北缘碧口地块逆冲推覆构造结构与运动学研究[D].中国地质大学(北京)硕士学位论文.
[22] 潘正洋,周云,赵国强.2020.基于弹性薄片格林函数的GPS应变求解方法对青藏高原东北缘三维构造变形特征的研究[J].大地测量与地球动力学,40(4):351-356.
[23] 邱啸飞,陈伟雄,徐大良,赵小明,童喜润.2022.扬子陆核崆岭杂岩太古宙地壳演化[J].华南地质,38(1):56-66.
[24] 沈传波,梅廉夫,刘昭茜,徐思煌.2009.黄陵隆起中-新生代隆升作用的裂变径迹证据[J].矿物岩石,29(2):54-60.
[25] 史克旭,张瑞青,肖勇.2020.利用虚拟地震测深法约束青藏高原东北缘及周边地区地壳厚度[J].地球物理学报,63(12):4369-4381.
[26] 田小彬.2009.龙门山北段构造特征及油气前景探讨[D].成都理工大学硕士学位论文.
[27] 许晨光.2016.扬子板块北缘碧口地块蓝片岩变质条件及年代学约束[D].中国地质大学(北京)硕士学位论文.
[28] 许志琴,李海兵,杨经绥.2006.造山的高原—青藏高原巨型造山拼贴体和造山类型[J].地学前缘,13(4):1-17.
[29] 许志琴,杨经绥,侯增谦,张泽明,曾令森,李海兵,张建新,李忠海,马绪宣.2016.青藏高原大陆动力学研究若干进展[J].中国地质,43(1):1-42.
[30] 杨晨.2011.碧口地块构造演化[D].西北大学硕士学位论文.
[31] 杨莉,袁万明,朱传宝,洪树炯,李世昱,冯子睿,张爱奎.2021.东昆仑中生代隆升剥露历史[J]. 岩石学报,37(12):3781-3796.
[32] 袁士松,阎凤增,齐金忠,葛良胜,郭晓东,喻万强,杨玉霞,余金元,吴春俊.2013.碧口地块北缘花岗岩脉地球化学特征、成因机制及与金成矿关系探讨[J].矿物岩石,33(4):29-41.
[33] 袁万明.2016.矿床保存变化研究的热年代学技术方法[J].岩石学报,32(8):2571-2578.
[34] 张国伟,郭安林,姚安平.2004.中国大陆构造中的西秦岭—松潘大陆构造结[J].地学前缘,11(3):23-32.
[35] 张宏飞,肖龙,张利,袁洪林,靳兰兰.2007.扬子陆块西北缘碧口块体印支期花岗岩类地球化学和Pb-Sr-Nd 同位素组成:限制岩石成因及其动力学背景[J].中国科学(D 辑),37(4):460-470.
[36] 张怀惠,张志诚,李建锋,唐建洲.2021.青藏高原东北缘中新生代构造演化:来自磷灰石和锆石裂变径迹的证据[J].地球物理学报,64(6):2017-2034.
[37] 张昭杰.2019.磷灰石裂变径迹退火过程反演方法分析[D].西北大学硕士学位论文.
[38] 赵祥生,马少龙,邹湘华,修泽雷.1990.秦巴地区碧口群时代层序,火山作用及含矿性研究[J].中国地质科学院西安地质矿产研究所所刊第29号,1-144.
[39] Brandon M T. 1996. Probability density plot for fission-track grain-age samples [J]. Radiation Measurements, 26: 663-676.
[40] Fan L G, Meng Q R, Wu G L, Wei H H, Du Z M, Wang E. 2019. Paleogene crustal extension in the eastern segment of the NE Tibetan plateau [J]. Earth and Planetary Science Letters, 514: 62-74.
[41] Hurford A J, Gleadow A J W. 1977. Calibration of fission track dating parameters[J]. Nuclear Track Detection, 1: 41-48.
[42] Ketcham R A. 2005. Forward and inverse modeling of low-temperature thermochronometry data [J]. Reviews in Mineralogy & Geochemistry, 58: 275-314.
[43] Laslett G M, Green P F, Duddy I R, Gleadow A J W. 1987. Thermal annealing of fission tracks in apatite; 2: a quantitative analysis [J]. Chemical Geology (Isotope Geoscience Section), 65: 1-13.
[44] Li M, Tang L J, Yuan W M. 2015. Middle Miocene-Pliocene activities of the North Altyn fault system: evidence from apatite fission track data [J]. Arabian Journal Of Geosciences, 8: 9043-9054.
[45] Liu Z, Tian X B, Gao R, Wang G C, Wu Z B, Zhou B B, Tan P, Nie S T, Yu G P, Zhu G H. 2017. New images of the crustal structure beneath eastern Tibet from a high-density seismic array [J]. Earth and Planetary Science Letters, 480: 33-41.
[46] Wagner G A, Van den haute P. 1992. Fission-Track Dating [M]. Dordrecht: Kluwer Academic Publisher.
[47] Wang X, Chen L, Ai Y S, Xu T, Jiang M M, Ling Y, Gao Y F. 2018. Crustal structure and deformation beneath eastern and northeastern Tibet revealed by P-wave receiver functions [J]. Earth and Planetary Science Letters, 497: 69-79.
[48] Yuan W M, Yang Z Q, Zhang Z C, Deng J. 2011. The uplifting and denudation of main Huangshan Mountains, Anhui Province, China [J]. Science China (Earth Sciences), 54(8): 1168-1176.
[49] Zeitler P K, Tahirkheli R A K, Naeser C W, Johnson N M. 1982. Unroofing history of a suture zone in the Himalaya of Pakistan by means of fission -track annealing ages [J]. Earth and Planetary Science Letters, 57: 227-240.
-
计量
- 文章访问数: 728
- PDF下载数: 134
- 施引文献: 0