The Lithium and Rubidium Mineralization in the Dayishan Area, Nanling: Characteristics, Occurrence and Prospecting Evaluation
-
摘要: 湘南大义山复式花岗岩体为南岭地区重要的锡多金属成矿岩体之一,具有多期次、高分异演化特征。以往调查研究工作多注重锡矿,而锂铷等稀有金属矿勘查研究则相对薄弱。为了指导区域综合找矿评价,本文在系统分析大义山高分异花岗岩及其赋矿特征的基础上,总结了近年来该区锂铷矿的调查研究成果。区内锂铷矿化类型以蚀变花岗岩体型为主,其次为云英岩型、伟晶岩型。岩矿鉴定及电子探针分析显示,成矿元素Li、Rb主要赋存在云母中,与热液成因的黑鳞云母和富锂多硅白云母等的叠加蚀变关系密切,云母化蚀变强弱决定了锂铷含量的高低。本次研究显示伟晶岩中的原生云母主要为铁叶云母和白云母,分异程度相对较低,伟晶岩可能为稍早形成,并为晚期高分异花岗岩的热液蚀变及成矿提供一定的屏蔽条件。提出岩体内部晚期次细粒二(白)云母花岗岩小岩体、伟晶岩壳等应作为寻找锂铷矿的重要调查对象。Abstract: The Dayishan Complex Granite is one of the most important tin polymetallic mineralization bodies in the Nanling area, with characteristic of multi-stage and highly differentiated evolutions. Previous exploration and research work have mainly focused on tin ores, and research on rare metal ore exploration such as lithium and rubidium is relatively weak. In order to guide the evaluation of regional comprehensive ore exploration, this paper summarizes the achievements of lithium-rubidium mineral investigation in the Dayishan area in recent years, based on the systematic analysis of the highly differentiated granite and their mineralization characteristics. In this area,the lithium-rubidium mineralization types are mainly of altered granitic type, followed by greisen type and pegmatitic type. Systematic rock and ore identification and electron probe microanalysis show that the ore-forming elements Li and Rb are mainly occurs in mica, which is closely related to the superimposed alteration of hydrothermal protolithionite and Li-phengite. The intensity of mica alteration determines the concentration of lithium-rubidium. The primary mica in pegmatites of this study is mainly ferrifolite and muscovite, and the degree of differentiation is relatively low. The pegmatites may have been formed at an early stage, providing some shielding conditions for the hydrothermal alteration and mineralization of late high differentiated granite. Put forward that the small rock mass such as fine-grained two-mica/white-mica of late stage and pegmatite crust in rock mass should be taken as important investigation objects.
-
Key words:
- lithium ore /
- rubidium ore /
- occurrence states /
- prospecting evaluation /
- Dayishan area, Nanling /
-
-
[1] 陈希清,付建明,杨晓君,马丽艳,程顺波,卢友月. 2012. 南岭地区地球化学图集[M]. 武汉:中国地质大学出版社,1-109.
[2] 付建明,陈希清,马丽艳,程顺波. 2010. 南岭成矿带锡多金属找矿成果及找矿方向[J]. 矿床地质,29(S1):181-182.
[3] 付建明,程顺波,卢友月,马丽艳. 2012. 南岭地区钨锡多金属矿成矿规律及找矿方向[J].地球科学进展,27(S1):162-164.
[4] 付建明,马丽艳,程顺波,卢友月. 2013. 南岭地区锡(钨)矿成矿规律及找矿[J]. 高校地质学报,19(2):202-212.
[5] 高粉粉, 李凯旋, 冷成彪. 2022. 湘南香花岭锡铅锌多金属矿田的云母类型及对成矿的指示[J]. 地质论评, 68(4):1320-1344.
[6] 何飞, 高利坤, 饶兵, 沈海榕, 彭科波, 高广言, 张明. 2022.从锂云母中提锂及综合利用的研究进展[J]. 矿产综合利用, (5):82-89.
[7] 黄从俊, 王道永, 李泽琴, 席忠. 2013. 赵井沟铌钽多金属矿床特征及控矿因素分析[J]. 金属矿山, 42(8):77-79+95.
[8] 李惠纯. 2000. 大义山岩体内云英岩化电气石化的找矿意义[J]. 湖南地质,19(4):233-236.
[9] 李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要[J].地质学报, 88(12):2269-2283.
[10] 李剑锋, 卢友月, 张遵遵, 付建明, 秦拯纬. 2022. 南岭大义山岩体研究与找矿进展[J/OL].地球科学.http://kns.cnki.net/kcms/detail/42.1874.P.20220110.1521.010.html
[11] 毛景文,谢桂青,郭春丽,陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J]. 岩石学报,23(10):2329-2338.
[12] 毛景文,谢桂青,袁顺达,刘鹏,孟旭阳,周振华,郑伟.2018. 环太平洋成矿带斑岩-矽卡岩型铜矿和与花岗岩有关的锡多金属矿研究现状与展望[J]. 岩石学报,34(9):2501-2517.
[13] 舒良树, 朱文斌, 许志琴. 2021. 华南花岗岩型锂矿地质背景与成矿条件[J]. 地质学报, 95(10):3099-3114.
[14] 孙文礼,马叶情,宋庆伟. 2021. 中国花岗伟晶岩型锂矿特征和研究进展[J]. 地质与勘探, 57(3):478-496.
[15] 孙艳, 王登红, 王成辉, 李建康, 赵芝, 王岩, 郭唯明. 2019.我国铷矿成矿规律、新进展和找矿方向[J]. 地质学报,93(6):1231-1244.
[16] 孙映祥, 林博磊. 2019. 国内外铷资源开发利用研究及政策建议[J]. 中国矿业, 28(11):41-43.
[17] 覃莉茜, 饶灿, 林晓青, 吴润秋,王琪. 2021. 湖南香花岭地区花岗岩中锂对成岩成矿的制约[J].高校地质学报, 27(2):149-162.
[18] 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清,李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5):743-764.
[19] 王登红, 孙艳, 刘喜方, 田世洪, 代晶晶, 刘丽君, 马圣钞.2018. 锂能源金属矿产深部探测技术方法与找矿方向[J]. 中国地质调查, 5(1):1-9.
[20] 王核, 黄亮, 白洪阳, 王堃宇, 王振宏, 高昊, 周金胜, 秦艳,王焰. 2022. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 46(5):848-866.
[21] 王核, 徐义刚, 闫庆贺, 张晓宇. 2021. 新疆白龙山伟晶岩型锂矿床研究进展[J]. 地质学报, 95(10):3085-3098.
[22] 王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母:花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 35(1):69-75.
[23] 王守敬, 刘璐, 海东靖. 2017. 甘肃国宝山铷矿工艺矿物学研究[J]. 矿产保护与利用, (3):80-83.
[24] 王正军,谢磊,王汝成,朱金初,车旭东,赵旭. 2018. 一种特殊类型的云英岩:湘南香花岭地区癞子岭云英岩成岩成矿特征[J]. 高校地质学报,24(4):467-480.
[25] 文春华, 罗小亚, 李胜苗. 2016. 湖南道县正冲稀有金属矿床云英岩地球化学特征及对成矿的约束[J]. 桂林理工大学学报, 36(1):90-98.
[26] 吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章.2023. 南岭高分异花岗岩成岩与成矿[J]. 岩石学报, 39(1):1-36.
[27] 伍光英,彭和求,贾宝华. 2000. 湘南大义山岩体地质特征及其侵位机制分析[J]. 华南地质与矿产,(3):1-7.
[28] 邢凯, 朱清, 任军平, 邹谢华, 牛茂林, 刘君安, 肖阳. 2023.全球锂资源特征及市场发展态势分析[J/OL]. 地质通报.https://kns.cnki.net/kcms/detail//11.4648.P.20230208.1657.002.html
[29] 许志琴, 王汝成, 赵中宝, 付小方. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景[J]. 地质学报, 92(6):1091-1106.
[30] 许志琴, 朱文斌, 郑碧海, 舒良树, 李广伟, 车旭东, 秦宇龙.2021. 新能源锂矿战略与大陆动力学研究[J]. 地质学报, 95(10):2937-2954.
[31] 薛颖瑜, 刘海洋, 孙卫东. 2021. 锂的地球化学性质与富集机理[J]. 大地构造与成矿学, 45(6):1202-1215.
[32] 曾志方. 2013. 湖南大义山锡矿田构造控矿作用与成矿机理研究[D].中国地质大学(武汉)博士学位论文,1-93.
[33] 张遵遵, 蔺东永, 于玉帅, 卢友月, 付建明, 李剑锋, 秦拯纬,马丽艳, 宁勇云, 张吉梼. 2022. 南岭成矿带大义山藤山坳锡矿床花岗岩成因及锡成矿作用的指示[J]. 华南地质, 38(3):441-458.
[34] 周贺鹏, 耿亮, 郭亮, 杨志兆, 杜显彦. 2020. 江西宜春低品位锂云母矿综合回收工艺研究[J].非金属矿,43(4):59-61+98.
[35] 周厚祥,杨贵花,蒋中和,陈强春. 2005.大义山锡矿田矿床地质特征及矿床成因[J].华南地质与矿产,(2):87-94.
[36] Bradley D C, McCauley A D, Stillings L M. 2017. Mineral-deposit model for lithium-cesium-tantalum pegmatites[R]. U.S. Geological Survey Scientific Investigations Report, 2010-5070-O, 48 p.
[37] Franziska M, Christoph N, Frank M W, Nils F N. 2023. A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles[J]. Resources, Conservation and Recycling, 192: 106920.
[38] Lu Y Y, Cao J Y, Fu J M, Yang X Y, Yang Q Z, Guo J, Cheng S B, Qin Z W, Zhang Z Z, Zhang T Y, Xia J, Zhao Z. 2021. Petrogenesis of the granite related to the Dashunlong Sn polymetallic deposit, Dayishan ore field, South China [J]. Ore Geology Reviews, 139: 104478.
[39] Lu Y Y, Li J F, Cao J Y, Fu J M, Cheng S B, Qin Z W, Ma L Y, Feng J P, Zhang Z Z, Chen X Q. 2022. Geochronology and geochemistry of the Late Jurassic Wujiaping Sn deposit, Dayishan ore field, South China: Implications to the petrogenesis and Sn mineralization [J]. Solid Earth Sciences, 7(1): 72-86.
[40] Monier G, Robert J L.1986. Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600℃ , 2 kbar P H2O: comparison with natural lithium micas [J]. Mineralogical Magazine, 50(538): 641-651.
[41] Tindle A G, Webb P C. 1990. Estimation of lithium contents in trioctahedral micas using microprobe data: Application to micas from granitic rocks[J]. European Journal of Mineralogy, 2(5): 595-610.
[42] Tischendorf G, Gottesmann B, Föerster H J, Trumbull R B. 1997. On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation[J]. Mineralogical Magazine, 61(409): 809-834.
[43] Wang D H, Dai H Z, Liu S B, Wang C H, Yu Y, Dai J J, Liu L J, Yang Y Q, Ma S C. 2020. Research and exploration progress on lithium deposits in China[J]. China Geology, 3(1): 137-152.
[44] Zhang B, Qi F Y, Gao X Z, Li X L, Shang Y T, Kong Z Y, Jia L Q, Meng J, Guo H, Fang F K, Liu Y B, Jiang X, Chai H, Liu Z, Ye X T, Wang G D. 2022. Geological characteristics, metallogenic regularity, and research progress of lithium deposits in China[J]. China Geology, 5(4): 734-767.
[45] Zhang X F, Chen Z C, Rohani S, He M Y, Tan X M, Liu W Z. 2022. Simultaneous extraction of lithium, rubidium, cesium and potassium from lepidolite via roasting with iron (II) sulfate followed by water leaching[J]. Hydrometallurgy, 208: 105820.
[46] Zhang Z Z, Ning Y Y, Lu Y Y, Cao J Y, Fu J M, Zhao Z, Guo J, Ma L Y, Qin Z W, Li J F. 2021. Geological characteristics and metallogenic age of Tengshan’ao Sn deposit in Dayishan of South Hunan and its prospecting significance[J]. Solid Earth Sciences, 6(1):37-49.
-
计量
- 文章访问数: 883
- PDF下载数: 129
- 施引文献: 0