High Resolution Geochronology and Tectonic setting of the Niuling tungsten deposit in southern Jiangxi
-
摘要: 赣南牛岭钨矿床是近年新发现的典型石英脉型钨矿床。在矿床野外地质调查的基础上,本文选择矿区中细粒斑状黑云母花岗岩、含钨石英脉开展高精度测年研究,获得牛岭黑云母花岗岩LA-ICP-MS 锆石U-Pb 年龄为156±1 Ma(MSWD=0.94),辉钼矿Re-Os 等时线年龄为156.8±6.3 Ma (MSWD = 0.01),白云母40Ar-39Ar 阶段升温坪年龄为157.2±1.0 Ma (MSWD = 0.31)。上述测试结果一致表明,牛岭钨矿床成岩成矿作用均发生于晚侏罗世。辉钼矿Re/Os 同位素及成矿母岩性质反映成矿金属来自于地壳。综合华南侏罗纪-白垩纪地质事件序列和动力学研究成果,认为古太平洋板块西向俯冲机制下的安第斯型陆缘弧后环境可能是矿床的理想成矿构造背景。Abstract: Niuling W-Sn deposit in southern Jiangxi Province is a typical quartz vein type W-Sn deposit newly discovered in recent years. Based on the geological investigation, samples from fine-grained porphyritic biotite granite and W-bearing quartz veins in the deposit have been selected for high-precision dating studies to determine the ages of diagenesis and mineralization. The LA-ICP-MS zircon U-Pb age of the biotite granite and the Re-Os age of the molybdenite yielded 156 ± 1 Ma (MSWD= 0.94) and 156.8 ± 6.3 Ma (MSWD=0.01) respectively, and the 40Ar-39Ar age of the muscovite was 157.2 ± 1.0 Ma (MSWD= 0.31). The results of the tests above consistently showed that the diagenesis and mineralization of the Niuling W-Sn deposit both occurred in the Late Jurassic. The characteristics of the Re/Os isotopes and ore-forming host rocks reflected the crustal origin of the ore-forming metals. Combined with the previous Jurassic-Cretaceous sequence of geological events and dynamic studies in South China, it is indicated that an Andean-type back-arc environment under a westward subduction mechanism of the paleo Pacific plate might have been an ideal tectonic setting for the deposit.
-
Key words:
- Niuling tungsten deposit /
- geochronology /
- tectonic setting /
- South Jiangxi Province
-
-
[1] 陈莉莉,倪培,王国光,李文生,杨玉龙. 2018. 赣南茅坪钨矿黑钨矿及共生石英中流体包裹体组合(FIA)研究[J]. 南京大学学报(自然科学),54(2):336-350.
[2] 陈培荣,华仁民,章邦桐,陆建军,范春方. 2002. 南岭燕山早期后造山花岗岩类岩石学制约和地球动力学背景[J].中国科学(D辑:地球科学),32(4):279-289.
[3] 陈文,张彦,张岳桥,金贵善王清利. 2006. 青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar 热年代学证据[J].岩石学报,22(4):867-872.
[4] 陈毓川,裴荣富,张宏良,林新多,白鸽林,李崇佑,胡永嘉,刘姤群,冼柏琪. 1989. 南岭地区与中生代花岗岩类有关的有色、稀有金属矿床地质[M]. 北京:地质出版社,1-508.
[5] 程顺波,付建明,马丽艳,卢友月,王晓地,夏金龙. 2016. 南岭地区早侏罗世成矿作用——来自粤北大顶铁锡矿床LA-ICP-MS 和Ar-Ar 年代学证据[J]. 地质学报,90(1):163-176.
[6] 杜安道,屈文俊,李超,杨刚. 2009. 铼-锇同位素定年方法及分析测试技术的进展[J].岩矿测试,28(3): 288-304.
[7] 丰成友,许建祥,曾载淋,张德全,屈文俊,佘宏全,李进文,李大新,杜安道,董英君. 2007. 赣南天门山—红桃岭钨锡矿田成岩成矿时代精细测定及其地质意义[J].地质学报,81(7):952-963.
[8] 郭春丽,陈毓川,蔺志永,楼法生,曾载淋. 2011. 赣南印支期柯树岭花岗岩体SHRIMP 锆石U-Pb 年龄、地球化学、锆石Hf 同位素特征及成因探讨[J]. 岩石矿物学杂志,30(4):567-580.
[9] 付建明,徐德明,杨晓君,马丽艳,蔡明海,刘云华,魏君奇,刘国庆,魏道芳,陈希清,程顺波,梅玉萍. 2011. 南岭锡矿[M]. 武汉:中国地质大学出版社,1-241.
[10] 华仁民,陈培荣,张文兰,姚军明,林锦富,张展适,顾晟彦.2005. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景[J]. 高校地质学报,11(3):291-304.
[11] 蒋少涌,赵葵东,姜海,苏慧敏,熊索菲,熊伊曲,徐耀明,章伟,朱律运. 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报,65(33):3730-3745.
[12] 江西省地质调查研究院. 2013. 中华人民共和国江西省区域地质志(下册)[R]. 415-609.
[13] 李武显,赵希林,邢光福,岑涛,陶继华. 2013. 南岭东段早侏罗世沉积岩碎屑锆石U-Pb 定年及其地质意义——以东坑盆地为例[J].大地构造与成矿学,37(1):78-86.
[14] 刘善宝,王登红,陈毓川,李建康,应立娟,许建祥,曾载淋.2008. 赣南崇义—大余—上犹矿集区不同类型含矿石英中白云母40Ar/39年龄及其地质意义[J]. 地质学报,82(7):932-940.
[15] 毛景文,谢桂青,李晓峰,张长青,梅燕雄. 2004. 华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J]. 地学前缘,11(1):45-55.
[16] 屈文俊,杜安道. 2003. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄[J]. 岩矿测试,22(4):254-257+262.
[17] 舒良树,王艳,沙金庚. 2011. 中国东南部侏罗纪沉积特征与形成环境研究[J]. 地质学刊,35(4):337-348.
[18] 苏晓云,郭春丽,陈振宇,赵正,郭娜欣,赵芝. 2014. 赣南加里东期陡水岩体的锆石U-Pb 年龄、地球化学特征及其稀土含矿性探讨[J]. 大地构造与成矿学,38(2):334-346.
[19] 吴至军,范世祥,候珊珊,徐敏林. 2011. 江西大余牛岭钨锡矿成矿裂隙研究[J]. 中国钨业,26(3):15-18.
[20] 夏金龙,黄圭成,定立,丁丽雪,陈希清,季文兵. 2021. 南岭地区诸广山复式岩体年代格架研究[J]. 华南地质,37(3):280-297.
[21] 谢桂青. 2003. 中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例[D].中国科学院地球化学研究所博士学位论文,1-128.
[22] 徐先兵,张岳桥,贾东,舒良树, 王瑞瑞. 2009. 华南早中生代大地构造过程[J]. 中国地质,36(3):573-593.
[23] 张彦,陈文,陈克龙,刘新宇. 2006. 成岩混层(I/S)Ar-Ar 年龄谱型及39Ar核反冲丢失机理研究—以浙江长兴地区P-T 界线粘土岩为例[J]. 地质论评,52(4):556-561.
[24] 张岳桥,徐先兵,贾东,舒良树. 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘,16(1):234-247.
[25] Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192 (1-2): 59-79.
[26] Allègre C J, Luck J M. 1980. Osmium isotopes as petrogenetic and geological tracers[J]. Earth and Planetary Science Letters, 48(1): 148-154.
[27] Cawood P A, Zhao G C, Yao J L, Wang W, Xu Y J, Wang Y J. 2018. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 186(1): 173-194.
[28] Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1-2): 101-133.
[29] Corfu F, Hanchar J M, Hoskin PW O, Kinny P. 2003. Atlas of zircon textures. In: Hanachar J M. and Hoskin P W [J]. Reviews in Mineralogy and Geochemistry, 53(1): 469-500.
[30] Dong S W, Li J H, Cawood P A, Gao R, Zhang Y Q, Xin Y J. 2020. Mantle influx compensates crustal thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE reflection profiling[J]. Earth and Planetary Science Letters, 544: 116360.
[31] Du A D, Wu S Q, Sun D Z, Wang S X, Qu W J, Markey R, Stain H, Morgan J, Malinovskiy D. 2007. Preparation and Certirication of Re-Os Dating Reference Materials: Molybdenite HLP and JDC[J]. Geostandards and Geoanalytical Research, 28(1): 41-52.
[32] Feng C Y, Zeng Z L, Zhang D Q, Qu W J, Du A D, Li D X, She H Q. 2011. SHRIMP zircon U-Pb and molybdenite Re-Os isotopic dating of the tungsten deposits in the Tianmenshan-Hongtaoling W-Sn orefield, Southern Jiangxi Province, China, and geological implications[J]. Ore Geology Reviews, 43(1): 8-25.
[33] Gilder S A, Gill J, Coe R S, Zhao X X, Liu Z W, Wang G X, Yuan K R, Liu W L, Kuang G D, Wu H R. 1996. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China[J]. Jounal of Geophysical Research: Solid Earth, 101(B7): 16137-16154.
[34] Guo C L, Mao J W, Bierlein F, Chen Z H, Chen Y C, Li C B, Zeng Z L. 2011. SHRIMP U-Pb(zircon), Ar-Ar (muscovite) and Re-Os(molybdenite) isotopic dating of the Taoxikeng tungsten deposit, South China Block[J]. Ore Geology Reviews, 43(1): 26-39.
[35] Hu R Z, Zhou M F. 2012. Multiple Mesozoic mineralization events in South China—an introduction to the thematic issue[J]. Mineralium Deposita, 47(6): 579-588.
[36] Jiang Y H, Jiang S Y, Dai B Z, Liao S Y, Zhao K D, Ling H F. 2009. Middle to late Jurassic felsic and mafic magmatism in southern Hunan province, southeast China: Implications for a continental arc to rifting[J]. Lithos, 107(3-4): 185-204.
[37] Lambert D D, Walker R J, Morgan J W, Shirey S B, Carlson R W, Zientek M L, Lipin B R, Koski M S, Cooper R L. 1994. Re-Os and Sm-Nd Isotope Geochemistry of the Stillwater Complex, Montana: Implications for the Petrogenesis of the J-M Reef[J]. Journal of Petrology, 35(6): 1717-1753.
[38] Li C L, Wang Z X, Lü Q T, Tan Y L, Li L L, Tao T. 2021. Mesozoic tectonic evolution of the eastern South China Block: A review on the synthesis of the regional deformation and magmatism[J]. Ore Geology Reviews, 131:104028.
[39] Li X H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Science, 18(3): 293-305.
[40] Li X H , Li W X, Li Z X , Lo C H, Wang J, Ye M F, Yang Y H. 2009. Amalgamation between the Yangtze and Cathaysia blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174 (1-2): 117-128.
[41] Li J H, Zhang Y Q, Dong S W, Li H L. 2012. Late Mesozoic-Early Cenozoic deformation history of the Yuanma Basin, central South China[J]. Tectonophysics, 570-571: 163-183.
[42] Li J H, Zhang Y Q, Dong S W, Johnston S T. 2014. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 134: 98-136.
[43] Li J H, Dong, S W, Cawood P A, Zhao G C, Johnston S T, Zhang Y Q, Xin Y J. 2018. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 490: 170-179.
[44] Li Z X, Li X H, Kinny P D, Wang J, Zhang S, Zhou H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122(1-4): 85-109.
[45] Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35(2): 179-182.
[46] Li Z X, Li X H, Chung S L, Lo C H, Xu X S, Li W X. 2012. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary[J]. Tectonophysics, 532-535: 271-290.
[47] Lin W, Wang Q C, Chen K. 2008. Phanerozoic tectonics of south China block: New insights from the polyphase deformation in the Yunkai massif[J]. Tectonics, 27(6): TC6004.
[48] Lin S F, Xing, G F, Davis, D W, Yin C Q, Wu M L, Li L M, Jiang Y, Chen Z H. 2018. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 46 (4): 319-322.
[49] Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 4:1-70.
[50] Mao J W, Zhang Z C, Zhang Z H, Du A D. 1999. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 63(11-12): 1815-1818.
[51] Mao J W, Cheng Y B, Chen M H, Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48(3): 267-294.
[52] Ni P, Li W S, Pan J Y. 2020. Ore-forming Fluid and Metallogenic Mechanism of Wolframite-Quartz Vein Type Tungsten Deposits in South China[J]. Acta Geologica Sinica (English Edition), 94(6): 1774-1796.
[53] Shu L S, Faure M, Wang B, Zhou X M, Song B. 2008. Late Palaeozoic-Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia[J]. Comptes Rendus Geoscience, 340(2-3): 151-165.
[54] Shu L S, Zhou X M, Deng P, Wang B, Jiang S Y, Yu J H, Zhao X X. 2009. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis[J]. Journal of Asian Earth Sciences, 34(3): 376-391.
[55] Shu L S, Jahn, B M, Charvet J, Santosh M, Wang B, Xu X S, Jiang S Y. 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of science, 314(1): 154-186.
[56] Shu L S, Wang B, Cawood P A, Santosh M, Xu Z Q. 2015. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China[J]. Tectonics, 34(8): 1600-1621.
[57] Wang D H, Huang F, Wang Y, He H H, Li X M, Liu X X, Sheng J F, Liang T. 2020. Regional metallogeny of Tungsten-tin-polymetallic deposits in Nanling region, South China[J]. Ore Geology Reviews, 120: 103305.
[58] Wang J, Li Z X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up[J]. Precambrian Research. 122(1-4): 141-158.
[59] Wang Y J, Fan W M, Cawood P A, Ji S C, Peng T P, Chen X Y. 2007. Indosinian high strain deformation for the Yunkaidashan tectonic belt, south China: kinematics and 40Ar/39Ar geochronological constraints[J]. Tectonics, 26(6):TC6008.
[60] Wang Y J, Fan W M, Zhang G W, Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies[J]. Gondwana Research, 23(4): 1273-1305.
[61] Xu Z T, Yang Q F, Sun J G, Lei F Z, Pan X D, Li Z W. 2020. Origin of Late Jurassic high ‐K felsic volcanic rocks and related Au mineralization in the Dongyang deposit, central‐eastern Fujian, SE China, and its tectonic implications[J]. Geological Journal, 56(1): 572-598.
[62] Yan D P, Zhou M F, Song H L, Wang X W, Malpas J. 2003. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze block(South China) [J]. Tectonophysics, 361(3-4): 239-254.
[63] Yuan H L, Gao S, Liu X M, Li H M, Günther D, Wu F Y. 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 28(3): 353-370.
[64] Yu X Q, Wu G G, Zhao X X, Gao J F, Di Y J,Zheng Y,Dai Y P,Li C L,Qiu J T. 2010. The Early Jurassic tectono-magmatic events in southern Jiangxi and northern Guangdong provinces, SE China: Constraints from the SHRIMP zircon U-Pb dating[J]. Journal of Asian Earth Sciences, 39(5): 408-422.
[65] Zaw K, Peters S G, Cromie P, Burrett C, Hou Z Q. 2007. Nature, diversity of deposit types and metallogenic relations of South China[J]. Ore Geology Reviews, 31(1-4): 3-47.
[66] Zhang R Q, Lu J J, Lehmann B, Li C Y, Zhang L P, Guo J, Sun W D. 2017. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, Southern Jiangxi tungsten district, China[J]. Ore Geology Reviews, 82: 268-284.
[67] Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54.
[68] Zhao W W, Zhou M F, Li Y H M, Zhao Z, Gao J F. 2017. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China[J]. Journal of Asian Earth Sciences, 137: 109-140.
[69] Zhou J, Jin C, Suo Y H, Li S Z, Zhang L , Liu Y M, Wang G Z, Wang P C, Dai L M, Santosh M. 2021. Yanshanian mineralization and geodynamic evolution in the Western Pacific Margin: A review of metal deposits of Zhejiang Province, China[J]. Ore Geology Reviews, 135: 104216.
[70] Zhou M F, Gao J F, Zhao Z, Zhao W W. 2018. Introduction to the special issue of Mesozoic W-Sn deposits in South China[J]. Ore Geology Reviews, 101: 432-436.
[71] Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3-4): 269-287.
[72] Zhou, X M, Sun, T, Shen, W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33.
-
计量
- 文章访问数: 647
- PDF下载数: 93
- 施引文献: 0