DEM Geomorphological Features and Topographical Factor Analysis of Ion Adsorption Rare Earth Deposits in South China
-
摘要: 稀土是重要的战略资源,全球90%以上的重稀土蕴藏在我国南岭花岗岩风化壳稀土矿床内,如何快速实现花岗岩风化壳型(也称离子吸附型)稀土找矿技术的突破是目前面临的难题。近年来随着遥感技术的快速发展,利用遥感数据的空间特征、光谱特征和纹理特征,结合地质背景、成矿母岩、气候和地形地貌等分析离子吸附型稀土矿床的成矿条件已成为该类矿产勘查的有效手段。本文在利用华南地区DEM数据提取高程因子及坡度、坡形、地表粗糙度等派生因子的基础上,分析研究地形地貌特征对离子吸附型稀土矿床成矿的影响。研究结果表明:离子吸附型稀土矿床(点)分布于高程<500 m、坡度15° ~ 25°、地形起伏度0 ~ 30 m、地表切割深度10 ~ 50 m、地形特征为山顶或山脊等有利于风化作用形成风化壳的地区,这些地形地貌特征对于离子吸附型稀土矿床成矿具有明显的约束和控制作用。Abstract: Rare earths are important strategic resources, and more than 90% of the world's heavy rare earths are contained in the granite weathering crust rare earth deposits in the South Ridge of China, how to quickly realize the breakthrough of granite weathering crust type(also called ion adsorption type)rare earth finding technology is the current challenge. With the rapid development of remote sensing technology in recent years, the analysis of mineralization conditions of ion-adsorbed rare earth deposits by using spatial, spectral and textural characteristics of remote sensing data, combined with geological background, ore-forming parent rocks, climate and topography has become an effective tool for this type of mineral exploration. In this paper, the influence of topographic and geomorphological features on the mineralization of ion-adsorption rare earth deposits is analyzed and studied based on the extraction of elevation factors and derived factors such as slope, slope shape and surface roughness using DEM data in South China. The results show that ion-adsorption rare earth deposits(sites)are distributed in areas with elevation <500 m, slope 15° ~ 25° , topographic relief 0-30 m, surface cut depth 10 ~ 50 m, and topographic features such as hilltops or ridges, which are conducive to the formation of weathering crusts by weathering, and these topographic features have obvious constraining and controlling effects on ion-adsorption rare earth deposit mineralization.
-
-
[1] 董佳丹,陈晓玲,孙昆,徐强强.2019.利用MODIS资料监测湖北省PM 2.5 的3 种模型对比[J].测绘科学,44(10):35-42.
[2] 冯梦,许成,王睿,康志强.2015.南岭西段姑婆山―花山花岗岩基差异剥蚀机理与风化矿床分布特征[J].大地构造与成矿学,39(4):670-679.
[3] 江帆,吕晓华,王仲兰.2005.基于复化公式的DEM表面积算法分析[J].测绘学院学报,22(4):263-265.
[4] 蒋少涌,温汉捷,许成,王焰,苏慧敏,孙卫东.2019.关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J].中国科学基金,33(2):112-118.
[5] 江思义,李海良,邱恩露,王正,石覃剑,苏紫涵.2019.遥感技术在1∶5 万地质灾害调查中的应用——以广西贺州市平桂区为例[J].资源信息与工程,34(5):97-101+105.
[6] 李瑞,王建荣,凌恳,王忠强,曾钧跃,胡弦,朱世博.2021.粤东丰顺-揭西地区离子吸附型重稀土矿床内生成矿条件探讨[J].华南地质,37(2):177-192.
[7] 黎武,王汝兰,梁明智,牛冬强,何晓宇,季泽,骆志敏.2021.地形因子在芦山县水土流失评价中的应用研究[J].安徽农学通报,27(16):168-171.
[8] 李余华,张子军,龙庆兵,刘凤祥,李明晓,王敏,周家喜.2019.云南建水普雄铌稀土矿床微量和稀土元素地球化学特征[J].矿物学报,39(4):474-483.
[9] 刘新星,陈毓川,王登红,黄凡,赵芝.2016.基于DEM的南岭东段离子吸附型稀土矿成矿地貌条件分析[J].地球学报,37(2):174-184.
[10] 汤国安,刘学军,闾国年.2005.数字高程模型及地学分析的原理与方法[M].北京:科学出版社.
[11] 汤国安,李发源,刘学军.2010.数字高程模型教程[M].北京:科学出版社.
[12] 王洪娜,廖敏杰.2022.浅析福建省农村基层防汛预报预警体系建设实施方案[J].农村实用技术,249(8):113-115+118.
[13] 王婷,潘军,蒋立军,邢立新,于一凡,王鹏举.2018.基于DEM的地形因子分析与岩性分类[J].国土资源遥感,30(2):231-237.
[14] 王学求,周建,张必敏,刘东盛,徐善法,王玮,王强,乔宇,谢明君,刘福田,迟清华,刘昱恒,胡庆海,严桃桃,李瑞红,田密,吴慧,刘汉粮,柳青青.2022.云南红河州超大规模离子吸附型稀土矿的发现及其意义[J].地球学报,43(4):509-519.
[15] 王秀云.2009.DEM在地貌分析研究中的应用[J].安徽农业科学,37(23):11326-11327.
[16] 许成,宋文磊,何晨,王丽泽.2015.外生稀土矿床的分布、类型和成因概述[J]. 矿物岩石地球化学通报,34(2):234-241.
[17] 要红杰.2020.遥感技术在地籍测量中的应用研究[J].价值工程,39(17):187-188.
[18] 袁忠信,李建康,王登红,郑国栋.2012.中国稀土矿床成矿规律[M].北京:地质出版社,1-116.
[19] 翟明国,吴福元,胡瑞忠,蒋少涌,李文昌,王汝成,王登红,齐涛,秦克章,温汉捷.2019.战略性关键金属矿产资源:现状与问题[J].中国科学基金,33(2):106-111.
[20] 张培善.1989.中国稀土矿床成因类型[J].地质科学,(1):26-32.
[21] 张天柱,张凤荣,谢臻,黄敬文.2019.精准扶贫背景下云南少数民族山区农村居民点空间格局演变[J].农业工程学报,35(9):246-254.
[22] 张祖海.1990.华南风化壳离子吸附型稀土矿床[J].地质找矿论丛,5(1):57-71.
[23] 周贺鹏,谢帆欣,张永兵,罗仙平.2022.离子型稀土矿地球化学特征与物性研究[J].稀有金属,46(1):78-86.
[24] 邹新勇,陈斌锋,刘孝滨.2016.华南离子型稀土矿地貌与风化壳特征[J].低碳世界,127(25):75-76.
[25] Bao Z W, Zhao Z H. 2008. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China [J]. Ore Geology Review, 33(3-4): 519-535.
[26] European Commission. 2018. Report on critical raw materials and the circular economy [R].
[27] Fu W, Li X T, Feng Y Y, Feng M, Peng Z, Yu H X, Lin H. 2019. Chemical weathering of S-type granite and formation of rare earth element (REE)-rich regolith in South China: Critical control of lithology [J]. Chemical Geology, 520: 33-51.
[28] Li Y H M, Zhao W W, Zhou M F. 2017. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model [J]. Journal of Asian Earth Sciences, 148: 65-95.
[29] Yang M J, Liang X L, Ma L Y, Huang J, He H P, Zhu J X. 2019. Adsorption of REEs on kaolinite and halloysite: A link to the REE distribution on clays in the weathering crust of granite[J]. Chemical Geology, 525: 210-217.
-
计量
- 文章访问数: 1065
- PDF下载数: 85
- 施引文献: 0