Genesis of Baizhuping Gold Deposit in Yichang, Hubei: Evidence from Fluid Inclusion and H-O-S-Pb Isotope Geochemistry
-
摘要: 宜昌白竹坪石英脉型金矿床位于湘西-鄂西成矿带西部黄陵背斜核部东北缘,是该地区代表性矿床之一。成矿过程可划分为无矿化石英脉阶段(Ⅰ)、石英-黄铁矿-方铅矿阶段(Ⅱ)和石英-碳酸盐阶段(Ⅲ)。流体包裹体研究表明:不同阶段石英中均含有大量的流体包裹体,以气液两相和富液相为主,总体为中低温度(151 ~ 341℃)、中低盐度(3.53% ~ 14.10% NaCleqv)和低密度(0.752 ~ 1.019 g/cm3)的流体;估算的流体捕获压力为12.2 ~ 33.7 Mpa;推测成矿深度为1.22 ~ 3.37 km。流体包裹体群体成分及单个流体包裹体激光拉曼分析表明:成矿流体总体属于NaCl-H2O-CO2体系。氢、氧同位素分析显示,成矿流体的δ18OH2O变化于+1.0‰ ~ +5.3‰,δDH2O变化于-56.1‰ ~ -35.0‰,表明成矿流体主要由变质水和大气降水组成,成矿主阶段以变质水为主,晚期有较多大气降水的加入;金属硫化物的δ34S 值为0.93‰ ~ 6.69‰,206Pb/204Pb 为15.634 ~ 15.677,207Pb/204Pb 为15.238 ~ 15.318,208Pb/204Pb为36.634 ~ 36.796,表明成矿物质主要来源于下地壳及上地幔。总体上,白竹坪金矿床成因类型应为造山型金矿,受区域深大断裂以及次级的韧-脆性剪切带控制。Abstract: Yichang Baizhuping gold deposit is located in the northeast edge of Huangling anticline core in the west of western Hunan- western Hubei metallogenic belt, one of the representative deposits in this area. The ore type is mainly quartz vein gold deposit. The mineralization process can be divided into Non-mineralized quartz vein stage (Ⅰ), quartz-pyrite-galena stage (Ⅱ) and quartz-carbonate stage (Ⅲ). The study of fluid inclusions shows that there are large number of fluid inclusions in quartz at different stages, mainly gas-liquid two-phase and liquid-rich types with general medium-low temperature (151~341℃ ), medium-low salinity (3.53% ~14.10% NaCleqv) and low density (0.752 ~ 1.019 g/cm3).The estimated fluid capture pressures range from 12.2 MPa to 33.7 MPa, with the formation depth of 1.22~3.37 km. Laser Raman analysis of group fluid inclusions and single fluid inclusions shows that ore-forming fluids generally belong to the NaCl-H2O-CO2system.Oxygen and hydrogen isotope data from quartz show that the δ18O V-SMOW values range from 13.0‰ to 15.3‰,δ18O H2O values from +1.0‰ to +5.3‰,and δDH2O values between -56.1‰ and -35.0‰, which revealed that the ore-forming fluids of the Baizhuping gold deposit were composed of metamorphic water and meteoric water,while the ore-forming fluid of main metallogenic stage mainly came from the metamorphic water, with the addition of more meteoric water at the late stage. The δ34S values of sulfides range from 0.93‰ to 6.69‰ .Among Pb isotopes,the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of sulfides are in the range of 15.634 to 15.677, 15.238 to 15.318 and 36.634 to 36.796 respectively , which revealed that the ore-forming materials mainly came from the lower crust and upper mantle. The genetic type of Baizhuping gold deposit should be orogenic gold deposit with obvious ore-controlling effects from regional deep faults and ductile-brittle shear zones.
-
-
[1] 曹锐,李德威,易顺华,曹圣华,李芳.2009.黄陵背斜中南部月亮包金矿床流体成矿作用及矿床成因探讨[J].黄金,30(2):14-19.
[2] 陈衍景,倪培,范宏瑞,Pirajno F,赖勇,苏文超,张辉.2007.不同类型热液金矿系统的流体包裹体特征[J].岩石学报,23(9):2085-2108.
[3] 李金祥,邓军,吴文根,王银宏,程敦伍,李剑.2004.山东招远金矿集中区矿床及围岩中硫和铅同位素的研究[J].现代地质,18(2):187-192.
[4] 梁细荣,李献华,刘永康,刘颖,王甘霖.1999.激光探针等离子体质谱同时测定锆石微区铀-铅年龄及微量元素[J].岩矿测试,18(4):253-258.
[5] 刘伟,李新俊,邓军.2002.东天山金窝子石英脉金矿床成矿流体和成矿物质的来源[J]. 中国科学(D 辑),32( 增):105-119.
[6] 刘圣德,阳传金,李方会,廖宗明,张权绪,陈诚.2015.湘西—鄂西成矿带黄陵背斜金矿成因及赋矿特征[J].资源环境与工程,29(2):150-154.
[7] 卢焕章,Guha,方根保.1999.山东玲珑金矿的成矿流体特征[J].地球化学,28(5):421-437.
[8] 卢焕章,范宏瑞,倪培,欧光习,沈昆,张文淮.2004.流体包裹体[M].北京:科学出版社,1-487.
[9] 路远发.2004.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学,33(5):459-464.
[10] 邱正杰,范宏瑞,丛培章,刘玄,杨奎锋.2015.造山型金矿床成矿过程研究进展[J].矿床地质,34(1):21-38.
[11] 邵洁涟.1988.金矿找矿矿物学[M].武汉:中国地质大学出版社,38-45.
[12] 苏欣栋.1987.湖北黄陵背斜核部原生金矿类型及其地质特征[J]黄金,2(5):11-16+2.
[13] 孙丰月,金巍,李碧乐,彭晓蕾.2000.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学≥报,30(增):27-30.
[14] 武广,陈衍景,糜梅,朱明田,刘军.2008.大兴安岭北部小伊诺盖沟金矿床流体包裹体特征及地质意义[J].大地构造与成矿学,32(2):185-194.
[15] 向萌,胡胜华,聂开红,卢金祥,杨朋,周舟.2021.鄂西黄陵背斜核部金矿地球化学特征及成因探讨[J].资源环境与工程,35(6):787-793+874.
[16] 向萌,张权绪,牟宗玉,聂开红,李方会.2019.湖北宜昌白竹坪金矿流体包裹体特征及成矿机理探讨[J].资源环境与工程,33(4):460-463+529.
[17] 熊成云,韦昌山,金光富,李文羡,向文金.1998.鄂西黄陵背斜核部中段金矿基本特征及成矿规律[J].华南地质与矿产,(1):32-40.
[18] 熊成云,韦昌山,金光富,谭文清,李文羡.2004.鄂西黄陵背斜地区前南华纪古构造格架及主要地质事件[J].地质力学学报,10(2):97-112.
[19] 张德会,刘伟.1998.流体包裹体成分与金矿床成矿流体来源——以河南西峡石板沟金矿床为例[J].地质科技情报,17(增):67-71.
[20] 周舟,蒋达源,雷雳,牟宗玉,向萌,范小军.2020.湖北保康六冲坪金矿流体包裹体特征及成矿机理探讨[J].资源环境与工程,34(S2):39-44.
[21] 朱炳泉.1998.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[M].北京:科学出版社,1-330.
[22] Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 57(3): 683-684.
[23] Brown P E. 1989. FLINCOR: A microcomputer program for the reduction and investigation of fluid-inclusion data[J]. American Mineralogist, 74(11): 1390-1393.
[24] Deng J,Wang Q F. 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 36: 219-274.
[25] Goldfarb R J, Groves D I, Cardoll S. 2001. Orogenic Au and Geologic time: A global synthesis[J]. Ore Geology Reviews, 18: 1-75.
[26] Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 13: 7-27.
[27] Hoefs J. 1997. Stable isotope geochemistry[M]. Berlin: Springer, 4th Edition, 199-201.
[28] Hofstra A H, Snee L W, Rye R O, Folger H W, Phinisey J D, Loranger R J, Dahl A R, Naeser C W, Stein H J, Lewchuk M. 1999. Age Constraints on Jerritt Canyou and other Carlin-Type Gold Deposits in the Western United States-Relationship to Mid-Tertiary Extension and Magmatism[J]. Economic Geology, 94(6): 769-802.
[29] Jia Y F, Kerrich R, Goldfarb R. 2003. Metamorphic origin of Ore-Forming Fluids for Orogenic Gold-Bearing Quartz Vein Systems in the North American Cordillera: Constraints from a Reconnaissance Study of delta δ15N,δD, and δ18O[J]. Economic Geology, 98(1):109-123.
[30] Kober B. 1987. Single-zircon evaporation combined with Pb+ emitter bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology[J]. Contributions to Mineralogy and Petrology, 96(1): 63-71.
[31] Macfarlane A W, Marcet P, LeHuray A P, Petersen U. 1990. Lead Isotope Provinces of the Central Andes Inferred form Ores and Crustal Rocks[J]. Economic Geology, 85(8): 1857-1880.
[32] Ohmoto H. 1986. Stable isotope geochemistry of ore deposits[J]. Reviews in Mineralogy and Geochemistry, 16(1): 491-559.
[33] Ridley J R, Diamond L W. 2000. Fluid chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models[J]. Reviews in Economc Geology, 13: 141-162.
[34] Roedder E. 1984. Fluid inclusions[J]. Review in Mineralogy, 12: 1-644.
[35] Rollinson H R. 1993. Using geochemical date:evaluation, presentation, interpretation[M]. New York: John Wiley, 1-352.
[36] Sibson R H, Robert F, Poulsen K H. 1988. High-angle reverse faults fluid-pressure cycling, and mesothernal gold quartz deposits[J]. Geology, 16(6): 551-555.
[37] Zartman R E, Doe B R. 1981. Plumbotectonics—the model[J]. Tectonophysics, 75(1-2): 135-162.
[38] Zhou Z J, Chen Y J, Jiang S Y, Zhao H X, Qin Y, Hu C J. 2014. Geology, geochemistry and ore genesis of the Wenyu gold deposit, Xiaoqinling gold field, Qinling Orogen, southern margin of North China Craton [J]. Ore Geology Reviews, 59(1): 1-20.
-
计量
- 文章访问数: 807
- PDF下载数: 100
- 施引文献: 0