The Planform Geometry of the Incised Meanders from Yibin to Yichang in the Yangtze Catchment
-
摘要: 长江流域内的四川盆地和三峡地区分布着大量深切河曲,记录了曲流河的原始形态,通过分析深切河曲的形态可以了解地质历史时期古曲流河的相关信息。本文采用小波分析方法,利用软件MStaT从遥感影像中提取了深切河曲的干支流交汇角、小波功率谱、弯曲度、弧波长和振幅等参数。与现代曲流河进行对比后发现:在深切河曲中,交汇角为钝角的情况较为常见,占比为30.3%;在交汇点附近,干支流交汇作用对小波功率谱的影响较为显著,但是远离交汇点的小波功率谱则基本保持不变;大部分河流的弯曲度、弧波长和振幅等参数呈现出从上游至下游逐渐升高的趋势。从河谷形态分析上也可知:以嘉陵江为代表的深切河曲,其河谷形态以对称河谷为主,这表明河曲在下切形成深切河曲的过程中,河道的形态并没有发生大规模的变化。根据上述现象可推测,河道交汇角为钝角的情况并不能作为古长江流向发生倒转的证据;长江流域宜宾至宜昌段曾经是地形起伏度很低的准平原(或宽阔河谷),现今的深切河曲是古曲流河发生深切后而形成;长江在四川盆地和三峡地区应当为“叠置河”成因,长江在现今河道上并没有发生过倒流。Abstract: Many incised meanders exist in the Yangtze catchment, because their shapes are a good indication of the morphological characteristics of them and the historial information can be obtained. In this paper, the MStaT was used to get the junction angles of main rivers and tributaries, wavelet spectra, sinuosity, arc-wavelengths, and amplitudes of incised meanders from remote sensing images, using based on wavelet analysis. Comparinged with the modern meanders, the appearances of obtuse junction angles are common, accounting for 30.3%. Near the junction points, the effects of main channel junction have a significant impact on the wavelet energy spectrum, but the wavelet energy spectrum that away from the junction point is basically unchanged. Most rivers' curvature, arc wavelength and amplitude parameters have shown a trend of gradually rising from upstream to downstream. From the analysis of valley morphology, it can also be seen that the valley shape of the deep river curve represented by Jialing River is mainly symmetrical valley, which indicates that the river shape has not changed on a large scale in the process of forming the deep river curve. According to the above phenomenon, we speculate that the situation where the rivers' junction angle is obtuse cannot be used as evidence of reversing the flow of the ancient Yangtze River. The Yibin to Yichang section of the Yangtze River Basin was once a peneplain (or wide river valley) with low terrain. Incised meanders are formed by the ancient meanders in the process of deep curve. The Yangtze River should be the cause of the "superimposed" in the Sichuan Basin and the Three Gorges regions. The flow direction of incised meanders has not been reversed on the river channels today.
-
-
[1] 李承三.1956.长江发育史[J].人民长江,(12):3-6.
[2] 廖喜林.1999.逆插支流的演变与河流掉向的关系[J].地质灾害与环境保护,10(2):14-17+23.
[3] 唐贵智.2001.长江三峡地区新构造地质灾害和第四纪冰川作用与三峡形成图集[M].武汉:湖北科学技术出版社.
[4] 田陵君,李平忠,罗雁.1996.长江三峡河谷发育史[M].成都:西南交通大学出版社.
[5] 王平,郑洪波,刘少峰.2013.长江中游反向过程——来自四川盆地东部的构造地貌指示[J]第四纪研究, 33(4):631-644.
[6] 杨达源.2006.长江地貌过程[M].北京:地质出版社.
[7] 叶良辅,谢家荣.1925.扬子江流域巫山以下之地质构造及地文史[J].地质汇报,第7号:69-90.
[8] 张斌,艾南山,黄正文,易成波,覃发超.2007.中国嘉陵江河曲的形态与成因[J].科学通报,52(22):2671-2682.
[9] 赵诚.1996.长江三峡河流袭夺与河流起源[J].长春地质学院学报,26(4):69-74.
[10] Abendanon E C. 1908. Structural geology of the middle Yang-Tzïkiang Gorges[J]. The Journal of Geology, 16(7): 587-616.
[11] Addison P S. 2017. The illustrated wavelet transform handbook: Introductory theory and applications in science, engineering, medicine and finance [M]. CRC press.
[12] Barbour G B. 1936. Physiographic history of the Yangtze[J].Geographical Journal, 87(1): 17-32.
[13] Braun D D. 1983. Lithologic control of bedrock meander dimensions in the Appalachian Valley and Ridge Province[J]. Earth Surface Processes and Landforms, 8(3):223-237.
[14] Cao L C, Shao L, Xu D, Cui Y C. 2023. Provenance and evolution of East Asian large rivers recorded in the East and South China Seas: A review[J]. Geological Society of America Bulletin, 135(11-12):2723-2752.
[15] Chang T P, Toebes G H. 1970. A statistical comparison of meander planforms in the Wabash Basin [J]. Water Resources Research, 6(2): 557-578.
[16] Church M. 1992. Channel morphology and typology.//In: The Rivers Handbook [M]. Eds. P. Calow, P., Petts G., Blackwell Scientific Publications, Oxford.
[17] Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns [J]. Tectonics, 23(1): TC1006.
[18] Clift P D, Long H V, Hinton R, Ellam R M, Hannigan R, Tan M T, Blusztajn J, Duc N A. 2008. Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments [J]. Geochemistry Geophysics Geosystems, 9(4):1-29.
[19] Davis W M. 1893. The Osage River and the Ozark Uplift [J]. Science, 22(563): 276-279.
[20] Dente E, Lensky N G, Morin E, Enzel Y. 2021. From straight to deeply incised meandering channels: Slope impact on sinuosity of confined streams [J]. Earth Surface Processes and Landforms, 46(5): 1041-1054.
[21] Devauchelle O, Petroff A P, Seybold H F, Rothman D H. 2012. Ramification of stream networks [J]. Proceedings of the National Academy of Sciences, 109(51): P20832.
[22] Dozier J. 1976. An examination of the variance minimization tendencies of a supraglacial stream [J]. Journal of Hydrology, 31(3-4): 359-380.
[23] Dury G H. 1954. Contribution to a general theory of meandering valleys [J]. American Journal of Science, 252(4): 193-224.
[24] Ferguson R, Hoey T. 2008. Effects of tributaries on main-channel geomorphology [J]. River Confluences, Tributaries and the Fluvial Network, 183-208.
[25] Ferguson R I.1975. Meander irregularity and wavelength estimation [J]. Journal of Hydrology, 26(3-4): 315-333.
[26] Frasson R P D M, Pavelsky T M, Fonstad M A, Durand M T, Allen G H, Schumann G, Yang X . 2019. Global relationships between river width, slope, catchment area, meander wavelength, sinuosity, and discharge [J]. Geophysical Research Letters, 46(6): 3252-3262.
[27] Gardner T W. 1975. The history of Part of the Colorado River and Its tributaries: An Experimental Study [J].Four Corners Geological Society, 8:87-95.
[28] Gutierrez R R, Abad J D. 2014. On the analysis of the medium term planform dynamics of meandering rivers [J]. Water Resources Research, 50(5): 3714-3733.
[29] Gutierrez R R, Abad J D, Choi M, Montoro H. 2014. Characterization of confluences in free meandering rivers of the Amazon basin [J]. Geomorphology, 220: 1-14.
[30] Hackney C, Carling P. 2011. The occurrence of obtuse junction angles and changes in channel width below tributaries along the Mekong River, south-east Asia [J]. Earth Surface Processes and Landforms, 36(12): 1563-1576.
[31] Harden D R. 1990. Controlling factors in the distribution and development of incised meanders in the central Colorado Plateau [J]. Geological Society of America Bulletin, 102(2): 233-242.
[32] Harvey A M. 2007. High sinuosity bedrock channels: response to rapid incision—examples in SE Spain [J]. Revista C&G, 21(3-4): 21-47.
[33] Hooke J M. 1986. The significance of mid-channel bars in an active meandering river [J]. Sedimentology, 33(6):839-850.
[34] Hooke J M. 1984. Changes in river meanders: a review of techniques and results of analyses [J]. Progress in Physical Geography, 8(4): 473-508.
[35] Hooshyar M, Singh A, Wang D B. 2017. Hydrologic controls on junction angle of river networks [J]. Water Resources Research, 53(5): 4073-4083.
[36] Horton R E. 1932. Drainage-basin characteristics [J]. Transactions, American geophysical union, 13: 350-361.
[37] Horton R E. 1945. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology [J]. Geological Society of America Bulletin, 56(3): 275-370.
[38] Howard A D, Hemberger A T. 1991. Multivariate characterization of meandering [J]. Geomorphology, 4 (3-4): 161-186.
[39] Kale V S. 2005. The sinuous bedrock channel of the Tapi River, Central India: Its form and processes [J]. Geomorphology, 70(3-4): 296-310.
[40] Kniep A. 1905. Der Yangtze als Weg zwischen den westlichen und ostlichen China [J]. Gerlands Beiträg. z. Geophysik, 7: 1-31.
[41] Kong P, Granger D E, Wu F Y, Caffee M W, Wang Y J, Zhao X T , Zheng Y. 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River [J]. Earth and Planetary Science Letters, 278(1-2): 131-141.
[42] Lee J S, Chao Y T. 1924. Geology of the gorge district of the Yangtze(from Ichang to Tzekuei)with special reference to the development of the gorges [J]. Acta Geologica Sinica(English Edition), 3(3-4): 351-392.
[43] Leopold L B, Langbein W B. 1966. River meanders [J]. Scientific American, 214: 60-73.
[44] Lubowe J K. 1964. Stream junction angles in the dendritic drainage pattern [J]. American Journal of Science, 262(2): 325-339.
[45] Marani M, Lanzoni S, Zandolin D. 2002. Tidal meanders [J]. Water Resources Research, 38(11): 1225.
[46] Montgomery D R, Gran K B. 2001. Downstream variations in the width of bedrock channels [J]. Water Resources Research, 37(6): 1841-1846.
[47] Osterkamp W R, Hedman E. 1981. Perennial-streamflow characteristics related to channel geometry and sediment in the Missouri River basin [M]. US Government Printing Office.
[48] Pérez-Peña J V, Al-Awabdeh M, Azañón J M, Galve J P, Booth-Rea G, Notti D. 2017. SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles [J]. Computers & Geosciences, 104(C): 135-150.
[49] Rodriguez-Iturbe I, Rinaldo A. 1997. Fractal river basins: chance and self-organization [M]. Cambridge University Press.
[50] Ruben L D, Naito K, Gutierrez R R, Szupiany R, Abad J D. 2021. Meander Statistics Toolbox(MStaT): A toolbox for geometry characterization of bends in large meandering channels [J]. SoftwareX, 14: 100674.
[51] Schumm S A. 1967. Meander wavelength of alluvial rivers [J]. Science, 157(3796): 1549-1550.
[52] Speight J G. 1965. Meander spectra of the Angabunga River [J]. Journal of Hydrology, 3(1): 1-15.
[53] Stark C P, Barbour J R, Hayakawa Y S, Hattanji T, Hovius N, Chen H G, Lin C W , Horng M J , Xu K Q, Fukahata Y. 2010. The climatic signature of incised river meanders[J]. Science, 327(5972): 1497-1501.
[54] Stølum H-H. 1996. River meandering as a self-organization process[J]. Science, 271(5256): 1710-1713.
[55] Ting S. 1944. The Origin of the Water-Gaps on the Yangtze and Chialing Rivers[J]. Bulletin of the Geological Society of China, 24(3-4): 245-258.
[56] Tinkler K J. 1972. The superimposition hypothesis for incised meanders: a general rejection and specific test [J]. Area,4(2): 86-91.
[57] Torrence C, Compo G P. 1998. A practical guide to wavelet analysis [J]. Bulletin of the American Meteorological Society, 79(1): 61-78.
[58] Wang P, Zheng H B, Liu S F. 2013. Geomorphic constraints on middle Yangtze River reversal in eastern Sichuan Basin, China [J]. Journal of Asian Earth Sciences, 69(6): 70-85.
[59] Willis B, Blackwelder E, Sargent R H, Hirth F, Walcott C D, Weller S, Girty G H. 1907. Research in China Vol. II: Systematic geology[M]. Carnegie Institution ofWashington.
[60] Winslow A. 1893. The Osage River and its meanders[J]. Science, 22(546): 31-32.
[61] Yih L, Xie J. 1925. Geologic structure and physiographic history of the Yangtze valley below Wushan[J]. Bulletin of the Geological Society of China, 5: 87-109.
[62] Zheng H B, Clift P D, Wang P, Tada R, Jian J T, He M Y, Jourdan F. 2013. Pre-miocene birth of the Yangtze River [J]. Proceedings of the National Academy of Sciences, 110(19): 7556-7561.
-
计量
- 文章访问数: 517
- PDF下载数: 38
- 施引文献: 0