Application of Satellite-Aerial-Terrestrial-Underground Approach in Site Investigation with Complex Geological Characteristics
-
摘要: 复杂地质条件下的场地调查往往受地形起伏、断裂构造复杂、水文地质条件变化剧烈、人类工程扰动强烈等因素影响,存在调查范围缺乏科学性、调查尺度与精度难以协同平衡导致总体工作量部署高而高风险区表征精度相对不足。本文通过融合“星空界”、“天空界”、“地表界”、“地下界”技术,在突破单一技术手段片面零散探测的基础上,强调空天地一体化与井下探测技术的有机融合,构建了星空地井一体化探测技术体系。该一体化探测技术在湖北典型污染场地地下水污染调查中得到了有效应用验证,具有全局性视野认知、自组织高效诊断识别、兼具大时空尺度风险筛查与场地尺度分层精细表征等技术优势。此外,采用该一体化探测技术体系在江西赣南边远山区找水打井与地下水源应急供水中得到了应用验证,从技术方法上克服了传统单一方法的不确定性,科学有效地提高了基岩山区水文地质调查找水的成功率与工作效率。地表界调查圈定找水靶区,论证地下水源找水井位;地下界探测应用落地,基岩山区水文地质钻探涌水量达120 m3/d,解决了赣南革命老区季节性缺水的实际问题。作为行业共性关键技术,星空地井一体化探测技术体系在生态环境、自然资源、水利巡查、应急救灾等业务领域应用前景广阔。未来在多技术方法融合、多元异质信息融合及项目应用落地方面有待进一步拓展,天空界无人机航测、地下界分层精细探测新技术新方法等尚需加强研发应用与技术协同。Abstract: Site investigation under complex geological conditions is often affected by factors such as undulating topography, complex faults, drastic changes in hydrogeological conditions, and human activity disturbances, it is a challenge. There is a lack of science in the scope of the investigation, and it is difficult to synergistically balance the scale and accuracy of the investigations, resulting in a high overall workload deployment and relatively insufficient accuracy in characterizing high-risk areas. To address these challenges, an integrated survey approach is proposed that includes satellite, aerial, terrestrial, and underground methods, which break through the scattered detection of various technical means and emphasise on integration of the Space-Air-Ground technology. This integrated approach had been effectively applied in the investigation of groundwater pollution in a typical landfill site in Hubei, demonstrating its technological advantages on global perspective cognition, self-organized and efficient diagnosis and identification, risk screening at large spatial and temporal scales, and fine characterization of site-scale stratification. In addition, the approach had also been applied in the investigation of water supply from groundwater in a remote mountainous area in Ganzhou, Jiangxi Province. The results demonstrated its technological advantages in overcoming the uncertainty of the traditional single-method approach, scientifically and effectively improving the success rate and work efficiency of water searching in bedrock mountainous areas in the hydrogeological investigations. Satellite and terrestrial surveys were applied to delineate target areas and their locations; underground detection technologies were implemented to drill groundwater, and well yield of the water-supply well reached 120 m3/d, which effectively solved the seasonal water shortage problem in the studied areas in south Jiangxi. As a key technology, the integrated Satellite-Aerial-Terrestrial-Underground approach has broad application prospects in multiple fields such as ecological environment, natural resources, water resources, and emergency management. In the future, there is room for further prospect of the integration of multiple technological methods and diversified heterogeneous information Moreover, new technological synergy in the aerial surveying of the sky by unmanned aerial vehicles and underground surveying of multilevel stratigraphic characterization still need to be strengthened.
-
-
[1] 陈雯,余绍文,张宏鑫,刘怀庆.2023.北海市铁山港东部地区地下水水化学特征及形成机制[J].华南地质, 39(1):95-107.
[2] 程峰,苏夏征,周洁军,郭尚其.2017.岩溶区尾矿库渗漏机理与综合防治技术——以环江北山铅锌矿尾矿库为例[J].中国岩溶,36 (2): 242-247.
[3] 郭金许.2017. 复杂地质条件下岩土工程勘察的应用与实践分析[J].西部资源, (3): 86-87.
[4] 何文熹, 孙晨, 殷宗敏, 杨玉龙. 2022.基于多源遥感数据的矿区地质灾害变化态势预测系统[J].自动化与仪器仪表,( 8):58-61.
[5] 江成鑫,赵江,张洪文.2021.复杂岩溶条件下锰矿尾矿库地下水溶质运移特征数值模拟研究[J].中国环境监测,37(1): 95-102.
[6] 蒋瑞瑞,甘甫平,郭艺,闫柏琨.2023.土壤水分多源卫星遥感联合反演研究进展[J/OL].自然资源遥感. https://kns.cnki.net/kcms/detail//10.1759.p.20230104.0949.001.html
[7] 雷添杰,李世灿,李小涵,冯杰,路京选,曲伟.2019.旱情遥感监测指标研究进展[J]. 水利水电技术,50 (S2):25-31.
[8] 李德仁.2012.论空天地一体化对地观测网络[J].地球信息科学学报,14 (4): 419-425.
[9] 李琦,刘学浩,李霞颖,卢绪涛,宋然然,李小春.2019.基于U型管原理的浅层地下流体环境监测与取样技术[J].环境工程,37 (2): 8-12+21.
[10] 李旭杰,布雅,孙颖,辛元雪,沈寄畅,胡居荣,顾燕,张云飞,李建霓.2020.一种面向空天地一体化的水环境监测系统部署方法CN202010389885.4 [P].CN111426810A,国家知识产权局.
[11] 刘博.2020. 井下探测机器人的应用和设计要点[J].科技资讯,18 (1): 57+59.
[12] 刘道涵,罗士新,陈长敬.2020.高密度电阻率法在丹江口水源区尾矿坝监测中的应用[J]. 物探与化探,44 (1):215-219.
[13] 刘磊,薛强,梁冰,赵颖. 2010. 垃圾填埋场封场后气体产出及释放规律研究[J].环境卫生工程,18 (1): 19-21.
[14] 刘学浩,黄长生,刘圣博,易秤云,肖攀,黎义勇. 2021. 江西禾丰盆地水循环野外科学观测基地建设进展[J].地质通报, 40 (4): 610-622.
[15] 刘学浩,李琦,王清,李小春,王宁涛.2017. 一孔多层地下水环境监测技术国际经验与对中国的启示[C]. 中国环境科学学会科学与技术年会论文集, 中国福建厦门.
[16] 刘颖, 涂晨, 丁贞玉, 张岩坤, 王晓康, 蔡国军, 武猛, 骆永明.2022.膜界面探测器在有机污染场地调查中的应用研究进展[J].环境科学研究,35 (7): 1725-1734.
[17] 刘咏梅,范鸿建,盖星华,刘建红,王雷.2021.基于无人机高光谱影像的NDVI估算植被盖度精度分析[J].自然资源遥感, 33(3):11-17.
[18] 罗晓云.2018.某垃圾填埋场环境水文地质条件调查和评价[J].中国水运(下半月),18 (8): 98-99.
[19] 骆永明.2011.中国污染场地修复的研究进展、问题与展望[J].环境监测管理与技术, 23 (3): 1-6.
[20] 潘伟.2018.天地一体化在生态环境监测、监管中的应用[J].黑龙江环境通报,42 (4): 85-88.
[21] 欧阳波罗,易强,路韬,黄超,邵长生,肖立权,刘声凯.2022.水文地质调查结合直流电法在赣南地区找水中的应用[J].华南地质,38(2):340-349.
[22] 桑国庆,鲁晓喆,曹方晶,刘昌军,孙盈,王建光.2020.基于“空天地一体化”河湖水域岸线遥感监管模式[J].中国水利,(20): 76-78.
[23] 沈学民, 承楠, 周海波, 吕丰, 权伟, 时伟森, 吴华清, 周淙浩.2020.空天地一体化网络技术:探索与展望[J].物联网学报,4 (3): 3-19.
[24] 孙平贺,周生伟,曹函,高强,程功弼,张辉.2023.环境地质调查中智能直推随钻测量装置的应用研究[J].煤田地质与勘探,51(9): 156-163.
[25] 汤斌,武桂芝,赵葆,于宗民.2018.某厂区搬迁遗留场地环境调查研究[J].绿色科技,(24): 5-9+14.
[26] 王久懿,王泓沣,战勇.2021.无人机低空遥感技术在自然资源监测管理中的应用[J].信息与电脑(理论版), 33 (12):7-9.
[27] 王磊,章昱,徐帅,伏永朋.2019. 丹江口水库总磷浓度遥感反演及其时空特征研究[J].华南地质与矿产,35 (4):449-456.
[28] 王明明,解伟,安永会,龚磊,王文祥,崔虎群.2019.封隔注浆分层成井技术在水文地质勘查中的应用研究[J].水文地质工程地质,46 (1): 50-55.
[29] 肖如林,刘慧明,付卓,刘思含,杨旻,蔡明勇,闻瑞红.2017.基于“天地一体化”指标的尾矿库安全预警技术研究[J].环境与可持续发展, 42 (6): 117-121.
[30] 肖如林,申文明,刘彬彬,熊文成,付卓,史园莉.2013.基于“天地一体化”的尾矿库环境风险评估[J].安全与环境工程, 20 (1): 69-74.
[31] 徐靓,程刚,朱鸿鹄.2021.基于空天地内一体化的滑坡监测技术研究[J].激光与光电子学进展,58(9):98-111.
[32] 薛强,赵颖,刘磊,陆海军.2011.垃圾填埋场灾变过程的温度-渗流-应力-化学耦合效应研究[J].岩石力学与工程学报,30 (10): 1970-1988.
[33] 杨海菊,闭馨月.2020.广西典型自然保护区监管天地一体化技术应用探究[J].环境监测管理与技术,32 (3): 59-62.
[34] 杨玉龙,王磊,雷天赐,何文熹.2021.赣南于都县遥感生态指数与地质建造空间相关性研究[J].华南地质,37 (2):205-215.
[35] 尹永川.2021. 复杂地质条件下岩土工程勘察实践探讨[J].工程质量,39 (8): 89-92.
[36] 游哲远,肖怀德,赵珂.2014. 尾矿库渗滤液对地下水环境影响评价研究——以一电解金属锰项目尾矿库为例[J].环境科学与管理,39 (3): 192-194.
[37] 臧传凯,沈芳,杨正东.2021.基于无人机高光谱遥感的河湖水环境探测[J].自然资源遥感, 33(3):45-53.
[38] 张发旺, 陈立, 王滨, 么红超, 许柏青, 李敏巍, 胡博文, 钱龙.2016.矿区水文地质研究进展及中长期发展方向[J].地质学报,90 (9): 2464-2475.
[39] 张红梅,速宝玉.2003.垃圾填埋场渗滤液及对地下水污染研究进展[J].水文地质工程地质,(6): 110-115.
[40] 张景华,欧阳渊,陈远智,李富,刘小霞,刘洪,赵银兵.2021.基于无人机遥感的四川省昭觉县农业产业园土地适宜性评价[J].中国地质,48 (6): 1710-1719.
[41] 张凯,李全生,戴华阳,郭俊廷,阎跃观.2020. 矿区地表移动“空天地”一体化监测技术研究[J].煤炭科学技术,48(2): 207-213.
[42] 张雷,刘利军,郭晨辉.2020.水文地质勘察在污染场地环境调查中的重要性探讨[J].环境与发展, 32 (2): 60-61.
[43] 张敏,蔡五田. 2011. 污染场地土壤与地下水调查的关键思路和方法介绍——以示范项目调查为例[J].环境科学与管理,36 (6): 31-35.
[44] 赵勇胜.2007. 地下水污染场地污染的控制与修复[J].吉林大学学报(地球科学版), 37(2): 303-310.
[45] 周权平,杨海. 2021.无人机技术在长三角水网平原区生态环境地质调查中的应用示范[J].华东地质,42 (2): 175.
[46] 中华人民共和国卫生部,中国国家标准化管理委员会.2007. 中华人民共和国国家标准《生活饮用水卫生标准GB 5749-2006》[S]. 北京:中国标准出版社,1-9.
[47] 朱思才,张庆海,甘凤伟,秦秀峰,陈德稳,马林霄.2021.海外矿产资源快速勘查评价体系集成与应用[J].矿产勘查,12(1): 124-133.
[48] 左一鸣,李健,林荷娟.2013.太湖流域水资源保护天地一体化监测体系构想[J].水利信息化,(1): 57-60.
[49] Acharya B S, Bhandari M, Bandini F, Pizarro A, Perks M, Joshi D R, Wang S, Dogwiler T, Ray R L, Kharel G, Sharma S. 2021. Unmanned aerial vehicles in hydrology and water management: Applications, challenges, and perspectives[J]. Water Resources Research, 57(11):e2021WR029925.
[50] Ahmed II J B, Mansor S. 2018. Overview of the application of geospatial technology to groundwater potential mapping in Nigeria[J].Arabian Journal of Geosciences, 11: 504.
[51] Becker M W. 2006. Potential for Satellite Remote Sensing of GroundWater[J].GroundWater, 44 (2): 306-318.
[52] Dubovik O, Schuster G, Xu F, Hu Y X, Bösch H, Landgraf J, Li Z Q. 2021. Grand challenges in satellite remote sensing[J]. Frontiers in Remote Sensing, 2: 619818.
[53] Kirsch R. 2006. Groundwater geophysics: a tool for hydrogeology[B], Springer.
[54] Lautenbacher C C. 2006. The Global Earth Observation System of Systems: Science Serving Society[J]. Space Policy, 22 (1): 8-11.
[55] Liu J J, Shi Y P, Fadlullah Z M, Kato N. 2018. Space-Air-Ground Integrated Network: A Survey[J]. IEEE Communications Surveys & Tutorials,20 (4): 2714-2741.
[56] Liu X H, Li Q, Song R R, Fang Z M, Li X C. 2016. A multilevel U-tube sampler for subsurface environmental monitoring[J]. Environmental Earth Science, 75(16):1194.
[57] MOORE G K. 1979.What is a picture worth? A history of remote sensing[J]. Hydrological Sciences Bulletin, 24 (4): 477-485.
[58] Rehman F, Harbi H M, Azeem T, Naseem A A, Ullah M F, Rehman S U, Riaz O, Rehman F, Abuelnaga H S O.2021. Shallow geophysical and hydrological investigations to identify groundwater contamination in Wadi Bani Malik dam area Jeddah, Saudi Arabia[J]. Open Geosciences, 13 (1): 272-279.
[59] Roy P S, Behera M D, Srivastav S K. 2017. Satellite Remote Sensing: Sensors, Applications and Techniques[J]. Proceedings of the National Academy of Sciences India Section A-Physical Sciences, 87(4): 465-472.
[60] Vélez-Nicolás M, García-López S, Bardero L, Ruiz-Ortiz V, Sánchez-Bellón Á. 2021. Applications of unmanned aerial systems (UASs) in hydrology: A review[J]. Remote Sensing, 13 (7): 1359.
[61] Wasowski J, Bovenga F. 2014. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives[J]. Engineering Geology, 174: 103-138.
[62] Xu Q, Huang R Q, Fan X M, Liu P. 2006. A study of monitoring, early warning and control engineering for the Danba landslide, China[J]. Environmental science, engineering, geology, 562:1-9.
[63] Zhang S, Lv Y H, Yang H B, Han Y Y, Peng J Y, Lan J W, Zhan L T, Chen Y M, Bate B. 2021. Monitoring and Quantitative Human Risk Assessment of Municipal Solid Waste Landfill Using Integrated Satellite-UAV-Ground Survey Approach[J]. Remote Sensing, 13 (22): 4496.
-
计量
- 文章访问数: 1068
- PDF下载数: 86
- 施引文献: 0