Evaluation of Characteristics and Reserves of Geothermal Resources in the Xujiadong Area, Chenzhou City
-
摘要: 为查明郴州市地下热水资源的特征及储量,本文选取许家洞地区两个典型地热田,通过地热地质调查、水质测试等方法调查了研究区的地质条件、地热流体场特征、地下热水水化学类型。基于上述研究开展了许家洞地区地热资源储量的分析评价。研究结果表明:(1)区内地下热水受断裂构造控制,是入渗地下水沿着断裂构造在深部循环过程中吸收隐伏岩体中的热能形成的;(2)地下热水水化学类型主要为HCO3-Ca 型、HCO3-Ca·Na型或HCO3·SO4-Ca·Mg型,为低温、无色透明的弱碱性水;(3)热水的主要补给来源为大气降水,水分入渗后主要沿区内发育的北东向断裂构造(F24、F7、F25、F8)运移到一定深度,地下水逐渐增温变成地下热水,在断裂交汇处沿着不均匀发育的岩溶裂隙系统向上运移,以温泉形式出露于地表;(4)研究区地下热水每年可提供热能约3.23×108 MJ,每年可节约标准煤资源约1.18×104 t。该研究成果对郴州市地热资源的合理开发利用具有重要指导意义。Abstract: In order to find out the characteristics and reserves of geothermal water resources in Chenzhou City, two typical geothermal fields in the Xujiadong area were selected, and their geological conditions, characteristics of geothermal fluid field, and hydro-chemical types of geothermal water were also investigated by means of geothermal geological survey and water quality test. Based on the above research, an analysis and evaluation of geothermal resource reserves in this study area was conducted. The results show that: (1) The geothermal water is controlled by fault structure and is formed by the infiltrated groundwater absorbing heat energy from buried rock mass during deep circulation along fault structure. (2) The main hydro-chemical types are HCO3-Ca type, HCO3-Ca·Na type or HCO3·SO4-Ca·Mg type, and the geothermal water is low-temperature, colorless and transparent weakly alkaline water. (3) The main supply source of geothermal water is atmospheric precipitation. After water infiltration, it migrated to a certain depth along the developed NE fault structure (F24, F7, F25, F8), and during this process, it absorbed heat energy and gradually warms to form hot water. Afterwards it migrated upwards along the unevenly developed karst fissure system at faults intersection, and finally emerged on the surface as hot springs. (4) The geothermal water can provide about 3.23×108 MJ of thermal energy annually in this research area, which can save about 1.18×104 t of standard coal resources per year. The research results are important for guiding the rational development and utilization of geothermal resources in Chenzhou City.
-
-
[1] 卞跃跃,赵丹.2018.四川康定地热田地下热水成因研究[J].地球学报,39(4):491-497.
[2] 国家市场监督管理总局,中国国家标准化管理委员会.2022.生活饮用水卫生标准:GB5749-2022[S].北京:中国标准出版社.
[3] 国家环境保护局.1989.渔业水质标准:GB11607-1989[S].北京:中国标准出版社.
[4] 何欣,马悦.2019.华北板块奥陶系碳酸盐岩热储的水化学特征及其成因机制[J].安全与环境工程,26(3):9-15.
[5] 何雨江,丁祥.2020.基于参数辨识的典型区地热资源量研究——以银川平原西部斜坡区为例[J].地质学报,94(7):2131-2138.
[6] 胡志华,高洪雷,万汉平,张松,郝伟林,吴儒杰.2022.西藏羊八井地热田水热蚀变的时空演化特征[J].地质论评,68(1):359-374.
[7] 黄豪擎,袁兴成,彭清华,郭游,薛仲凯,旦增,李健,刘振峰,巴桑次仁,孙飞,袁胜.2023.喜马拉雅山南地区地热水和钙华地球化学特征与成因机制[J].沉积与特提斯地质,43(2):340-356.
[8] 李金玺,孙东,李智武,曹楠,童馗,廖俊,张正鹏,董建兴,章旭.2023.四川盆地水热型地热资源构造成因模式[J].地质科学,58(2):438-460.
[9] 刘润川,任战利,叶汉青,任文波,王琨,淮银超,祁凯.2021.地热资源潜力评价——以鄂尔多斯盆地部分地级市和重点层位为例[J].地质通报,40(4):565-576.
[10] 刘敏.2020.郴州市热温泉资源特征及其开发利用布局研究[J].西部探矿工程,32(11):188-191.
[11] 刘凯,王珊珊,孙颖,崔文君,朱德莉.2017.北京地区地热资源特征与区划研究[J].中国地质,44(6):1128-1139.
[12] 廖海吉,蓝俊康,洪淑娜,闫志为,黄希明.2013.汤水寨温泉带状热储特征及其热储量评价[J].桂林理工大学学报,33(3):449-453.
[13] 牛兆轩,牛雪,张林友,张成龙,陈东方.2022.共和盆地恰卜恰地区新近系地下热水化学特征[J].科学技术与工程,22(21):9025-9033.
[14] 屈丽丽,徐世光,杨秀梅,禚传塬.2011.怒江跃进桥温泉水化学特征及成因分析[J]. 科学技术与工程,11(20):4723-4729.
[15] 史杰,汪美华,马小军,文章,朱栗佟.2022.新疆塔什库尔干县曲曼地热田地下热水同位素研究[J].地球学报,43(5):645-653.
[16] 孙杨艳,刘声凯,景营利.2020.郴州地热田地热温标的选取和热储温度估算[J].资源信息与工程,35(1):36-39.
[17] 生态环境部,国家市场监督管理总局.2021.农田灌溉水质标准:GB5084-2021[S].北京:中国标准出版社.
[18] 王大纯,张人权,史毅虹,许绍倬.1986.水文地质学基础[M].北京:地质出版社.
[19] 尹恒,吴勇,高东东,古广华.2012.德阳市城市规划区地下水化学特征分析[J].地下水,34(1):30-35.
[20] 尹政,柳永刚,张旭儒,李玉山,冯嘉兴.2023.张掖盆地地热资源赋存特征及成因分析[J].水文地质工程地质,50(1):168-178.
[21] 赵璐,邬立,罗湘赣.2010.由地球化学温标推算贵阳市乌当区地热田热储温度[J].工程勘察,(S1):832-836.
[22] 朱天林.2006.郴州市许家洞地下热水[J].工程勘察,207(10):35-37.
[23] 张垚垚,刘凯,童珏,何庆成,贺晓龙,贾伍慧,张浩然,王书训.2024.江西吉安钱山地区地热资源特征及热源机制[J].地球学报,45(1):39-52.
[24] 赵振,秦光雄,罗银飞,晁嘉豪,耿松鹤,张亮.2021.西宁盆地地热水特征及回灌结垢风险[J].水文地质工程地质,48(5):193-204.
[25] 中华人民共和国国家卫生健康委员会,国家市场监督管理总局.2018. 食品安全国家标准饮用天然矿泉水:GB8537-2018[S].北京:中国标准出版社.
[26] 中华人民共和国国家卫生健康委员会,国家市场监督管理总局.2022.食品安全国家标准饮用天然矿泉水检验方法:GB8538-2022[S].北京:中国标准出版社.
[27] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.2010.地热资源地质勘查规范:GB/T11615-2010[S].北京:中国标准出版社.
[28] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,2016.天然矿泉水资源地质勘查规范:GB/T13727-2016[S].北京:中国标准出版社.
[29] Guo Q, Pang Z H, Wang Y C, Tian J. 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 81: 63-75.
[30] Karimi S, Mohammadi Z, Samani N. 2017. Geothermometry and circulation depth of groundwater in Semnan thermal springs, Northern Iran[J]. Environmental Earth Sciences, 76(19): 1-24.
[31] Li X, Huang X, Liao X, Zhang Y H. 2020. Hydrogeochemical Characteristics and Conceptual Model of the Geothermal Waters in the Xianshuihe Fault Zone, Southwestern China[J]. International Journal of Environmental Research and Public Health, 17(2): 500-514 .
[32] Liu F, Wang G L, Zhang W, Yue C, Tao L B. 2020. Using TOUGH2 numerical simulation to analyse the geothermal formation in Guide basin, China[J]. Journal of Groundwater Science and Engineering, 8(4): 328-337.
-
计量
- 文章访问数: 351
- PDF下载数: 69
- 施引文献: 0