华夏陆块晚新元古代-早古生代沉积物源的组成与演化及其对冈瓦纳大陆重建的意义

王伟, 薛尔堃, 张杨, 章俊, 蔡欣豫. 2024. 华夏陆块晚新元古代-早古生代沉积物源的组成与演化及其对冈瓦纳大陆重建的意义. 华南地质, 40(2): 211-233. doi: 10.3969/j.issn.2097-0013.2024.02.003
引用本文: 王伟, 薛尔堃, 张杨, 章俊, 蔡欣豫. 2024. 华夏陆块晚新元古代-早古生代沉积物源的组成与演化及其对冈瓦纳大陆重建的意义. 华南地质, 40(2): 211-233. doi: 10.3969/j.issn.2097-0013.2024.02.003
WANG Wei, XUE Er-Kun, ZHANG Yang, ZHANG Jun, CAI Xin-Yu. 2024. Provenance and Its Evolution of the Cathaysia Block in the Late Neoproterozoic-Early Paleozoic and Implication on the Reconstruction of the Gondwana Supercontinent. South China Geology, 40(2): 211-233. doi: 10.3969/j.issn.2097-0013.2024.02.003
Citation: WANG Wei, XUE Er-Kun, ZHANG Yang, ZHANG Jun, CAI Xin-Yu. 2024. Provenance and Its Evolution of the Cathaysia Block in the Late Neoproterozoic-Early Paleozoic and Implication on the Reconstruction of the Gondwana Supercontinent. South China Geology, 40(2): 211-233. doi: 10.3969/j.issn.2097-0013.2024.02.003

华夏陆块晚新元古代-早古生代沉积物源的组成与演化及其对冈瓦纳大陆重建的意义

  • 基金项目:

    国家自然科学基金项目(42272228)

详细信息
    作者简介: 王伟(1984-),男,博士,教授,研究方向为前寒武纪地质学和沉积岩石学,E-mail:wwz@cug.edu.cn
  • 中图分类号: P512.2; P548

Provenance and Its Evolution of the Cathaysia Block in the Late Neoproterozoic-Early Paleozoic and Implication on the Reconstruction of the Gondwana Supercontinent

  • 华南板块是冈瓦纳大陆的重要组成部分,其在冈瓦纳大陆中的古地理位置是恢复古大陆格局的关键要素,也是地质学界争论的焦点。本文汇总并对比了华南东南部华夏陆块多个盆地的成冰纪-奥陶纪碎屑沉积岩的岩石地层学、全岩地球化学和碎屑锆石数据,厘清了华夏陆块晚新元古代-早古生代三次重要的沉积-构造事件:晚成冰世砾岩指示的近源沉积事件,晚埃迪卡拉世硅质岩指示的海进事件,以及中寒武统底部平行不整合界面、砂岩中砾石的广泛出现指示的构造抬升事件。成冰纪-奥陶纪沉积岩中含有大量格林威尔早期(1300 ~ 1000 Ma)和晚期(1000 ~ 900 Ma)的碎屑锆石,分别主要来自澳大利亚和印度板块。印度东部为华夏盆地长期提供物质补给,而澳大利亚西部在晚埃迪卡拉世从主要源区变为次要源区。中寒武世华夏陆块抬升使内部850 ~ 700 Ma岩浆岩出露成为主要物源之一,是对外部构造应力的远程响应。因此,华夏陆块在晚新元古代-早古生代位于东冈瓦纳北缘,与印度、澳大利亚具有长期稳定的联系,毗邻东南极洲。在冈瓦纳大陆聚合过程中,印度和澳大利亚泛非期造山带的形成、抬升和剥蚀影响了华夏陆块沉积盆地的物源变化。
  • 加载中
  • [1]

    陈懋弘,梁金城,张桂林,李文杰,潘罗忠,李容森.2006.加里东期扬子板块与华夏板块西南段分界线的岩相古地理制约[J].高校地质学报,12(1):111-122.

    [2]

    福建省地质调查研究院.2016.中国区域地质志·福建志[M].北京:地质出版社.

    [3]

    广东省地质调查院.2017.中国区域地质志·广东志(送审稿)[R].

    [4]

    广西区域地质调查研究院.2016.中国区域地质志·广西志(送审稿)[R].

    [5]

    贾龙龙.2016.华南南部早古生代碎屑岩系原型盆地及构造古地理演化[D].中国地质大学(北京)硕士学位论文.

    [6]

    江西省地质矿产勘查开发局.2017.中国区域地质志·江西志[M].北京:地质出版社.

    [7]

    刘宝珺,许效松.1994.中国南方岩相古地理图集(震旦纪-三叠纪)[M].北京:科学出版社.

    [8]

    刘晓春, 胡娟, 陈龙耀, 陈意, 王伟, 夏蒙蒙, 韩建恩, 胡道功.2021.海南洋壳型高温榴辉岩:基本特征及待解问题[J].岩石学报,37(1):143-161.

    [9]

    龙文国,周岱,柯贤忠,王晶,吴俊,张建钰,王磊,王祥东,徐德明.2022.海南岛早古生代大地构造格局:来自志留纪早期碎屑锆石年代学的约束[J].华南地质,38(1):79-93.

    [10]

    龙文国,王晶,谭满堂,王磊,王祥东,吴俊,李岩.2023.海南地块形成与拼合时限:来自早石炭世变质粉细砂岩中碎屑锆石年代学的约束[J].华南地质,39(2):259-277.

    [11]

    牛志军,杨文强,宋芳,何垚砚,刘浩.2017.南岭成矿带早古生代地层区划与岩石地层的厘定[J].地层学杂志,41(3):256-265.

    [12]

    牛志军,杨文强,何垚砚,田洋.2020.湘桂地区新元古代地层序列物源分析构造演化[M].北京:科学出版社.

    [13]

    牛志军,宋芳,何垚砚,安志辉,田洋,刘浩,杨文强.2023.中南地区南华纪地层序列及对重大地质事件的响应[J].华南地质,39(2):173-185.

    [14]

    农军年,郭尚宇,孙明行,李昌明,石伟民,覃初礼.2020.桂东南大瑶山地区南华纪-寒武纪砂岩地球化学特征及对沉积构造环境的指示[J].华南地质与矿产,36(2):93-103.

    [15]

    舒良树.2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J].高校地质学报,12(4):418-431.

    [16]

    覃小锋,潘元明,李江,李容森,周府生,胡贵昂,钟锋运.2006.桂东南云开地区变质杂岩锆石SHRIMPU-Pb 年代学[J].地质通报,25(5):553-559.

    [17]

    王鹏鸣, 于津海, 孙涛, 时毓, 陈培荣, 赵葵东, 陈卫峰, 刘潜.2013.湘桂震旦-寒武纪沉积岩组成的变化——对华南构造演化的指示[J]. 中国科学: 地球科学,43(11):1893-1903+附录1-7.

    [18]

    魏震洋,于津海,王丽娟,舒良树.2009.南岭地区新元古代变质沉积岩的地球化学特征及构造意义[J].地球化学,38(1):1-19.

    [19]

    吴小辉.2018.粤西古水地区寒武纪地层研究[J].地层学杂志,42(1):27-38.

    [20]

    邢光福,杨祝良,陈志洪,姜杨,洪文涛,靳国栋,余明刚,赵希林,段政.2015.华夏地块龙泉地区发现亚洲最古老的锆石[J].地球学报,36(4):395-402.

    [21]

    殷鸿福,吴顺宝,杜远生,彭元桥.1999.华南是特提斯多岛洋体系的一部分[J].地球科学,24(1):1-12.

    [22]

    于津海,魏震洋,王丽娟,舒良树,孙涛.2006.华夏地块:一个由古老物质组成的年轻陆块[J]. 高校地质学报,12(4):440-447.

    [23]

    张爱梅,王岳军,范蔚茗,张菲菲,张玉芝.2011.福建武平地区桃溪群混合岩U-Pb 定年及其Hf 同位素组成:对桃溪群时代及郁南运动的约束[J].大地构造与成矿学,35(1):64-72.

    [24]

    张开毕,陈金良,林亨才,黄昌旗,罗志兴.2005.闽西南地区南华纪—震旦纪岩石地层的划分与对比[J].中国地质,32(3):363-369.

    [25]

    张雄,曾佐勋,刘伟,潘黎黎,杨宝忠,刘建雄,魏运许,贺赤诚,李绍凡.2016.湘南—桂东北地区寒武—奥陶纪沉积岩碎屑锆石U-Pb 年代学特征及其地质意义[J].中国地质,43(1):153-173.

    [26]

    郑宁,李廷栋,耿树方,宋志瑞,阎丽艳.2011.赣西南地区寒武纪沉积构造环境分析[J].中国地质,38(6):1454-1466.

    [27]

    朱洪发,张渝昌,秦德余,周浩达.1990.论浙皖赣闽地区早古生代盆地沉积特征及其构造环境[J].石油实验地质,12(2):121-134.

    [28]

    Axelsson E, Mezger K, Ewing T. 2020. The Kuunga Orogeny in the Eastern Ghats Belt: Evidence from geochronology of biotite, amphibole and rutile, and implications for the assembly of Gondwana[J]. Precambrian Research, 347: 105805.

    [29]

    Boger S D, Wilson C J L, Fanning C M. 2001. Early Paleozoic tectonism within the East Antarctic craton: The final suture between east and west Gondwana?[J]. Geology, 29(5): 463-466.

    [30]

    Cawood P A, Zhao G C, Yao J L, Wang W, Xu Y J, Wang Y J. 2017. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 186: 173-194.

    [31]

    Chang L X, Zhang S H, Li H Y, Xian H B, Wu H C, Yang T S. 2022. New Paleomagnetic Insights Into the Neoproterozoic Connection Between South China and India and Their Position in Rodinia[J]. Geophysical Research Letters, 49(10): e2022GL098348.

    [32]

    Chen C H, Lee C Y, Liu Y H, Xiang H, Zeng W, Zhou H W. 2018. Precambrian protoliths and Phanerozoic overprinting on the Wuyishan terrain (South China): New evidence from a combination of LA-ICPMS zircon and EMP monazite geochronology[J]. Precambrian Research, 307: 229-254.

    [33]

    Chen Q, Zhao G C, Sun M. 2021. Protracted northward drifting of South China during the assembly of Gondwana: Constraints from the spatial-temporal provenance comparison of Neoproterozoic ?Cambrian strata[J]. Geological Society of America Bulletin, 133(9-10): 1947-1963.

    [34]

    Chew D, O’Sullivan G, Caracciolo L, Mark C, Tyrrell S. 2020. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis[J]. Earth-Science Reviews, 202: 103093.

    [35]

    Condie K C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales[J]. Chemical Geology, 104(1-4): 1-37.

    [36]

    Daczko N R, Halpin J A, Fitzsimons I C W, Whittaker J M. 2018. A cryptic Gondwana-forming orogen located in Antarctica[J]. Scientific Reports, 8(1): 8371.

    [37]

    Fitzsimons I C W. 2000. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens[J]. Geology, 28(10): 879-882.

    [38]

    Goodge J W, Williams I S, Myrow P. 2004. Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross orogen, Antarctica: Detrital record of rift-, passive-, and active-margin sedimentation[J]. Geological Society of America Bulletin, 116(9-10): 1253-1279.

    [39]

    Guo R H, Hu X M, Garzanti E, Lai W, Yan B, Mark C. 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Xizang[J]. Earth-Science Reviews, 201: 103082.

    [40]

    Hietpas J, Samson S, Moecher D, Schmitt A K. 2010. Recovering tectonic events from the sedimentary record: Detrital monazite plays in high fidelity[J]. Geology, 38(2): 167-170.

    [41]

    Jing X Q, Yang Z Y, Evans D A D, Tong Y B, Xu Y C, Wang H. 2020. A pan-latitudinal Rodinia in the Tonian true polar wander frame[J]. Earth and Planetary Science Letters, 530: 115880.

    [42]

    Lancaster P J, Daly J S, Storey C D, Morton A C. 2016. Interrogating the provenance of large river systems: multi-proxy in situ analyses in the Millstone Grit, Yorkshire[J]. Journal of the Geological Society, 174(1): 75-87.

    [43]

    Li L M, Lin S F, Xing G F, Jiang Y, He J. 2017. First Direct Evidence of Pan-African Orogeny Associated with Gondwana Assembly in the Cathaysia Block of Southern China[J]. Scientific Reports, 7(1): 794.

    [44]

    Li L M, Lin S F, Xing G F, Davis D W, Davis W J, Xiao W J, Yin C Q. 2013. Geochemistry and tectonic implications of late Mesoproterozoic alkaline bimodal volcanic rocks from the Tieshajie Group in the southeastern Yangtze Block, SouthChina[J].PrecambrianResearch,230:179-192.

    [45]

    Li L M, Lin S F, Xing G F, Xiao F, Xiao W J. 2021. Identification of ca. 520 Ma mid-ocean-ridge?type ophiolite suite in the inner Cathaysia block, South China: Evidence from shearing-type oceanic plagiogranite[J]. Geological Society of America Bulletin, 134(7-8): 1701-1720.

    [46]

    LiWX, Li X H, Li Z X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 136(1): 51-66.

    [47]

    Li Z X, Li X H, Li W X, Ding S J. 2008. Was Cathaysia part of Proterozoic Laurentia? - new data from Hainan Island, south China[J]. Terra Nova, 20(2): 154-164.

    [48]

    Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L, Bao C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 122(5-6): 772-793.

    [49]

    Lu Y Y, Cao J Y, Fu J M, Liu L, Wu Q H, Yang X Y, Yang S X, Cheng S B, Qiu X F., He D. 2022. Discovery of a Hadean xenocrystic zircon in the Cathaysia Block[J]. Science Bulletin, 67(23): 2416-2419.

    [50]

    Myrow P M, Hughes N C, Goodge J W, Fanning C M, Williams I S, Peng S, Bhargava O N, Parcha S K, Pogue K R. 2010. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician[J]. Geological Society of America Bulletin, 122(9-10): 1660-1670.

    [51]

    Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715-717.

    [52]

    Qi L, Xu Y J, Cawood P A, Du Y S. 2018. Reconstructing Cryogenian to Ediacaran successions and paleogeography of the South China Block[J]. Precambrian Research, 314: 452-467.

    [53]

    Roser B P, Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 67(1): 119-139.

    [54]

    Rudnick R L, Gao S. 2014. Composition of the Continental Crust[M]. Treatise on Geochemistry (Second Edition), 4: 1-51.

    [55]

    Shu L S, Deng P, Yu J H, Wang Y B, Jiang S Y. 2008. The age and tectonic environment of the rhyolitic rocks on the western side of Wuyi Mountain, South China[J]. Science in China Series D: Earth Sciences, 51(8): 1053-1063.

    [56]

    Shu L S, Jahn B M, Charvet J, Santosh M, Wang B, Xu X S, Jiang S Y. 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 314(1): 154-186.

    [57]

    Taylor S R, Mclennan S M. 1985. The continental crust: Its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks [M]. Blackwell Scientific Publication.

    [58]

    Wan Y S, Liu D Y, Wilde S A, Cao J J, Chen B, Dong C Y, Song B, Du L L. 2010. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope[J]. Journal of Asian Earth Sciences, 37(2): 140-153.

    [59]

    Wan Y S, Liu D Y, Xu M H, Zhuang J M, Song B, Shi Y R, Du L L. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units[J]. Gondwana Research, 12(1-2): 166-183.

    [60]

    Wang K X, Sun L Q, Sun T, Huang H, Qin L S. 2018. Provenance, weathering conditions, and tectonic evolution history of the Cambrian meta-sediments in the Zhuguangshan area, Cathaysia Block [J]. Precambrian Research, 311: 195-210.

    [61]

    Wang L J, Lin S F, Xiao W J. 2023. Yangtze and Cathaysia blocks of South China: Their separate positions in Gondwana until early Paleozoic juxtaposition[J]. Geology, 51(8): 723-727.

    [62]

    Wang W, Cawood P, Pandit M, Zhao J H, Zheng J P. 2019. No collision between Eastern and Western Gondwana at their northern extent[J]. Geology, 47(4): 308-312.

    [63]

    Wang W, Zeng M F, Zhou M F, Zhao J H, Zheng J P, Lan Z F. 2018. Age, provenance and tectonic setting of Neoproterozoic to early Paleozoic sequences in southeastern South China Block: Constraints on its linkage to western Australia-East Antarctica[J]. Precambrian Research, 309: 290-308.

    [64]

    WangW, Zhou M F. 2013. Petrological and Geochemical Constraints On Provenance, Paleoweathering, and Tectonic Setting of the Neoproterozoic Sedimentary Basin In the Eastern Jiangnan Orogen, South China[J]. Journal of Sedimentary Research, 83(11): 974-993.

    [65]

    Wang W, Cawood P A, Pandit M K, Xia X P, Raveggi M, Zhao J H, Zheng J P, Qi L. 2021. Fragmentation of South China from greater India during the Rodinia-Gondwana transition[J]. Geology, 49(2): 228-232.

    [66]

    Wang Y J, Zhang F F, Fan W M, Zhang G W, Chen S Y, Cawood P A, Zhang A M. 2010. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics, 29(6): TC6020.

    [67]

    Wu L, Jia D, Li H B, Deng F E I, Li Y Q. 2010. Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: implications for its continental affinity[J]. Geological Magazine, 147(6): 974-980.

    [68]

    Xia Y, Xu X S, Niu Y L, Liu L. 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: The magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 309: 56-87.

    [69]

    Xiang H, Zhang L, Zhou H W, Zhong Z Q, Zeng W, Liu R, Jin S. 2008. U-Pb zircon geochronology and Hf isotope study of metamorphosed basic-ultrabasic rocks from metamorphic basement in southwestern Zhejiang: The response of the Cathaysia Block to Indosinian orogenic event[J]. Science in China Series D: Earth Sciences, 51(6): 788-800.

    [70]

    Xiong C, Niu Y L, Chen H D, Chen A Q, Zhang C G, Li F, Yang S, Xu S L. 2019. Detrital zircon U-Pb geochronology and geochemistry of late Neoproterozoic-early Cambrian sedimentary rocks in the Cathaysia Block: Constraint on its palaeo-position in Gondwana supercontinent[J]. Geological Magazine, 156(9): 1587-1604.

    [71]

    Xu Y J, Cawood P A, Du Y S, Hu L S, Yu W C, Zhu Y H, Li W C. 2013. Linking south China to northern Australia and India on the margin of Gondwana: Constraints from detrital zircon U-Pb and Hf isotopes in Cambrian strata[J]. Tectonics, 32(6): 1547-1558.

    [72]

    Xu Y J, Cawood P A, Du Y S, Zhong Z Q, Hughes N C. 2014. Terminal suturing of Gondwana along the southern margin of South China Craton: Evidence from detrital zircon U-Pb ages and Hf isotopes in Cambrian and Ordovician strata, Hainan Island[J]. Tectonics, 33(12): 2490-2504.

    [73]

    Xu Y J, Cawood P A, Zhang H C, Zi J W, Zhou J B, Li L X, Du Y S. 2019. The Mesoproterozoic Baoban Complex, South China: A missing fragment of western Laurentian lithosphere[J]. Geological Society of America Bulletin, 132(7-8): 1404-1418.

    [74]

    Xu Y J, Liang X, Cawood P A, Zi J W, Zhang H C, Liu J, Du Y S. 2022. Revisiting the paleogeographic position of South China in Gondwana by geochemistry and U-Pb ages of detrital monazite grains from Cambrian sedimentary rocks[J]. Lithos, 430-431: 106879.

    [75]

    Xue E K, Wang W, Huang S F, Lu G M. 2019. Detrital zircon U-Pb-Hf isotopes and whole-rock geochemistry of Neoproterozoic-Cambrian successions in the Cathaysia Block of South China: Implications on paleogeographic reconstruction in supercontinent[J]. Precambrian Research, 331: 105348.

    [76]

    Xue E K, Wang W, Zhou M F, Pandit M K, Huang S F, Lu G M. 2021. Late Neoproterozoic ? early Paleozoic basin evolution in the Cathaysia Block, South China: Implications of spatio-temporal provenance changes on the paleogeographic reconstructions in supercontinent cycles[J]. Geological Society of America Bulletin, 133(3-4): 717-739.

    [77]

    Xue E K, Chew D, Drakou F, Wang W. 2023. Paleogeographical reconstruction of the South China Block during Gondwana assembly using detrital apatite: Pan-African source affinity concealed by detrital zircon[J]. Geological Society of America Bulletin, 136(5-6):2063-2074.

    [78]

    Xue E K, Wang W, Chew D, Pandit M K, Deng X, Tian Y, Tong X R, Zhao J H. 2024a. Episodic water-fluxed anataxis recorded by migmatites from the Paleozoic Wuyi-Yunkai Orogeny in South China[J]. Gondwana Research, 126: 96-111.

    [79]

    Xue E K, Chew D, Drakou F, Wang W. 2024b. Detrital multi-mineral provenance constraints on the reconstruction of the South China Block within Gondwana [J]. Earth-Science Reviews, 253: 104798.

    [80]

    Yang Z Y, Jiang S Y. 2019. Detrital zircons in metasedimentary rocks of Mayuan and Mamianshan Group from Cathaysia Block in northwestern Fujian Province, South China: New constraints on their formation ages and paleogeographic implication[J]. Precambrian Research, 320: 13-30.

    [81]

    Yang Z Y, Sun Z M, Yang T S, Pei J L. 2004. A long connection (750-380 Ma) between South China and Australia: paleomagnetic constraints[J]. Earth and Planetary Science Letters, 220(3): 423-434.

    [82]

    Yao J L, Cawood P A, Shu L S, Zhao G C. 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 196: 102872.

    [83]

    Yao J L, Shu L S, Santosh M. 2011. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 20(2-3): 553-567.

    [84]

    Yao W H, Li Z X. 2016. Tectonostratigraphic history of the Ediacaran-Silurian Nanhua foreland basin in South China[J]. Tectonophysics, 674: 31-51.

    [85]

    Yao W H, Li Z X, Li W X, Li X H. 2017. Proterozoic tectonics of Hainan Island in supercontinent cycles: New insights from geochronological and isotopic results[J]. Precambrian Research, 290: 86-100.

    [86]

    Yao W H, Li Z X, Li W X, Li X H, Yang J H. 2014. From Rodinia to Gondwanaland: A tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China[J]. American Journal of Science, 314(1): 278-313.

    [87]

    Yao W H, Li Z X, Spencer C J, Martin E L. 2018. Indian-derived sediments deposited in Australia during Gondwana assembly[J]. Precambrian Research, 312: 23-37.

    [88]

    Yu J H, O’reilly S Y, Wang L J, Griffin W L, Zhang M, Wang R C, Jiang S Y, Shu L S. 2008. Where was South China in the Rodinia supercontinent?[J]. Precambrian Research, 164(1-2): 1-15.

    [89]

    Yu J H, Wang L J, O’reilly S Y, Griffin W L, Zhang M, Li C Z, Shu L S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research, 174(3-4): 347-363.

    [90]

    Zhang L M, Zhang Y Z, Cui X, Cawood P A, Wang Y J, Zhang A M. 2019. Mesoproterozoic rift setting of SW Hainan: Evidence from the gneissic granites and metasedimentary rocks[J]. Precambrian Research, 325: 69-87.

    [91]

    Zhang S H, Li H Y, Jiang G Q, Evans D A D, Dong J, Wu H C, Yang T S, Liu P J, Xiao Q S. 2015. New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications[J]. Precambrian Research, 259: 130-142.

    [92]

    Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54.

    [93]

    Zhao L, ZhaiMG, Zhou XW, Santosh M, Ma X D. 2015. Geochronology and geochemistry of a suite of mafic rocks in Chencai area, South China: Implications for petrogenesis and tectonic setting[J]. Lithos, 236-237: 226-244.

    [94]

    Zhou X Y, Yu J H, O'Reilly S Y, Griffin W L, Sun T, Wang X L, Tran M, Nguyen D. 2018. Component variation in the late Neoproterozoic to Cambrian sedimentary rocks of SW China-NE Vietnam, and its tectonic significance[J]. Precambrian Research, 308: 92-110.

    [95]

    Zoleikhaei Y, Mulder J A, Cawood P A. 2022. Evaluating sediment recycling through combining inherited petrogenic and acquired sedimentary features of multiple detrital minerals[J]. Basin Research, 34(3): 1055-1083.

  • 加载中
计量
  • 文章访问数:  80
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2024-01-22
修回日期:  2023-03-19
刊出日期:  2024-06-25

目录