Provenance and Its Evolution of the Cathaysia Block in the Late Neoproterozoic-Early Paleozoic and Implication on the Reconstruction of the Gondwana Supercontinent
-
摘要: 华南板块是冈瓦纳大陆的重要组成部分,其在冈瓦纳大陆中的古地理位置是恢复古大陆格局的关键要素,也是地质学界争论的焦点。本文汇总并对比了华南东南部华夏陆块多个盆地的成冰纪-奥陶纪碎屑沉积岩的岩石地层学、全岩地球化学和碎屑锆石数据,厘清了华夏陆块晚新元古代-早古生代三次重要的沉积-构造事件:晚成冰世砾岩指示的近源沉积事件,晚埃迪卡拉世硅质岩指示的海进事件,以及中寒武统底部平行不整合界面、砂岩中砾石的广泛出现指示的构造抬升事件。成冰纪-奥陶纪沉积岩中含有大量格林威尔早期(1300 ~ 1000 Ma)和晚期(1000 ~ 900 Ma)的碎屑锆石,分别主要来自澳大利亚和印度板块。印度东部为华夏盆地长期提供物质补给,而澳大利亚西部在晚埃迪卡拉世从主要源区变为次要源区。中寒武世华夏陆块抬升使内部850 ~ 700 Ma岩浆岩出露成为主要物源之一,是对外部构造应力的远程响应。因此,华夏陆块在晚新元古代-早古生代位于东冈瓦纳北缘,与印度、澳大利亚具有长期稳定的联系,毗邻东南极洲。在冈瓦纳大陆聚合过程中,印度和澳大利亚泛非期造山带的形成、抬升和剥蚀影响了华夏陆块沉积盆地的物源变化。
-
关键词:
- 沉积物源 /
- 碎屑锆石 /
- 晚新元古代-早古生代 /
- 华夏陆块 /
- 冈瓦纳大陆
Abstract: As a significant component of Gondwanaland, the South China Block holds a crucial role in reconstructing the paleogeographic framework of the supercontinent. In this study, we have compiled and compared lithostratigraphic, geochronological, and geochemical data from Cryogenian-Ordovician clastic sedimentary rocks across multiple sub-basins within the Cathaysia Block, situated in the southeastern portion of the South China Block. The abundance of siliceous and conglomeratic rocks, along with local unconformities in certain layers, suggests a proximal deposition during the late Cryogenian, followed by a late Ediacaran transgression and middle Cambrian uplift. Australia and India were the primary sources of zircons in the early (1300 ~ 1000 Ma) and late Grenvillian (1000 ~ 900 Ma) age, respectively, while detritus from East Antarctica contributed to a lesser extent. Notably, India served as a prolonged source terrane for the Cryogenian-Ordovician basin in the Cathaysia Block, whereas western Australia shifted from being a major to a secondary sediment supplier during the late Ediacaran. Intrinsic 850 ~ 700 Ma magmatic rocks that were exposed during the middle Cambrian uplift of the Cathaysia Block, in response to the far-field stress effects of the external tectonic movement, contributed as one of the provenances. Thus, the Cathaysia Block was inferred to be located in the northern margin of Eastern Gondwana during the late Neoproterozoic-early Paleozoic and had persistent connections with India and Australia, adjacent to East Antarctica. During the Gondwana assembly, the formation, uplift, and exhumation of the Pan-African orogenic belts in India and Australia influenced the provenance variations of sedimentary basins in the Cathaysia Block. -
-
[1] 陈懋弘,梁金城,张桂林,李文杰,潘罗忠,李容森.2006.加里东期扬子板块与华夏板块西南段分界线的岩相古地理制约[J].高校地质学报,12(1):111-122.
[2] 福建省地质调查研究院.2016.中国区域地质志·福建志[M].北京:地质出版社.
[3] 广东省地质调查院.2017.中国区域地质志·广东志(送审稿)[R].
[4] 广西区域地质调查研究院.2016.中国区域地质志·广西志(送审稿)[R].
[5] 贾龙龙.2016.华南南部早古生代碎屑岩系原型盆地及构造古地理演化[D].中国地质大学(北京)硕士学位论文.
[6] 江西省地质矿产勘查开发局.2017.中国区域地质志·江西志[M].北京:地质出版社.
[7] 刘宝珺,许效松.1994.中国南方岩相古地理图集(震旦纪-三叠纪)[M].北京:科学出版社.
[8] 刘晓春, 胡娟, 陈龙耀, 陈意, 王伟, 夏蒙蒙, 韩建恩, 胡道功.2021.海南洋壳型高温榴辉岩:基本特征及待解问题[J].岩石学报,37(1):143-161.
[9] 龙文国,周岱,柯贤忠,王晶,吴俊,张建钰,王磊,王祥东,徐德明.2022.海南岛早古生代大地构造格局:来自志留纪早期碎屑锆石年代学的约束[J].华南地质,38(1):79-93.
[10] 龙文国,王晶,谭满堂,王磊,王祥东,吴俊,李岩.2023.海南地块形成与拼合时限:来自早石炭世变质粉细砂岩中碎屑锆石年代学的约束[J].华南地质,39(2):259-277.
[11] 牛志军,杨文强,宋芳,何垚砚,刘浩.2017.南岭成矿带早古生代地层区划与岩石地层的厘定[J].地层学杂志,41(3):256-265.
[12] 牛志军,杨文强,何垚砚,田洋.2020.湘桂地区新元古代地层序列物源分析构造演化[M].北京:科学出版社.
[13] 牛志军,宋芳,何垚砚,安志辉,田洋,刘浩,杨文强.2023.中南地区南华纪地层序列及对重大地质事件的响应[J].华南地质,39(2):173-185.
[14] 农军年,郭尚宇,孙明行,李昌明,石伟民,覃初礼.2020.桂东南大瑶山地区南华纪-寒武纪砂岩地球化学特征及对沉积构造环境的指示[J].华南地质与矿产,36(2):93-103.
[15] 舒良树.2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J].高校地质学报,12(4):418-431.
[16] 覃小锋,潘元明,李江,李容森,周府生,胡贵昂,钟锋运.2006.桂东南云开地区变质杂岩锆石SHRIMPU-Pb 年代学[J].地质通报,25(5):553-559.
[17] 王鹏鸣, 于津海, 孙涛, 时毓, 陈培荣, 赵葵东, 陈卫峰, 刘潜.2013.湘桂震旦-寒武纪沉积岩组成的变化——对华南构造演化的指示[J]. 中国科学: 地球科学,43(11):1893-1903+附录1-7.
[18] 魏震洋,于津海,王丽娟,舒良树.2009.南岭地区新元古代变质沉积岩的地球化学特征及构造意义[J].地球化学,38(1):1-19.
[19] 吴小辉.2018.粤西古水地区寒武纪地层研究[J].地层学杂志,42(1):27-38.
[20] 邢光福,杨祝良,陈志洪,姜杨,洪文涛,靳国栋,余明刚,赵希林,段政.2015.华夏地块龙泉地区发现亚洲最古老的锆石[J].地球学报,36(4):395-402.
[21] 殷鸿福,吴顺宝,杜远生,彭元桥.1999.华南是特提斯多岛洋体系的一部分[J].地球科学,24(1):1-12.
[22] 于津海,魏震洋,王丽娟,舒良树,孙涛.2006.华夏地块:一个由古老物质组成的年轻陆块[J]. 高校地质学报,12(4):440-447.
[23] 张爱梅,王岳军,范蔚茗,张菲菲,张玉芝.2011.福建武平地区桃溪群混合岩U-Pb 定年及其Hf 同位素组成:对桃溪群时代及郁南运动的约束[J].大地构造与成矿学,35(1):64-72.
[24] 张开毕,陈金良,林亨才,黄昌旗,罗志兴.2005.闽西南地区南华纪—震旦纪岩石地层的划分与对比[J].中国地质,32(3):363-369.
[25] 张雄,曾佐勋,刘伟,潘黎黎,杨宝忠,刘建雄,魏运许,贺赤诚,李绍凡.2016.湘南—桂东北地区寒武—奥陶纪沉积岩碎屑锆石U-Pb 年代学特征及其地质意义[J].中国地质,43(1):153-173.
[26] 郑宁,李廷栋,耿树方,宋志瑞,阎丽艳.2011.赣西南地区寒武纪沉积构造环境分析[J].中国地质,38(6):1454-1466.
[27] 朱洪发,张渝昌,秦德余,周浩达.1990.论浙皖赣闽地区早古生代盆地沉积特征及其构造环境[J].石油实验地质,12(2):121-134.
[28] Axelsson E, Mezger K, Ewing T. 2020. The Kuunga Orogeny in the Eastern Ghats Belt: Evidence from geochronology of biotite, amphibole and rutile, and implications for the assembly of Gondwana[J]. Precambrian Research, 347: 105805.
[29] Boger S D, Wilson C J L, Fanning C M. 2001. Early Paleozoic tectonism within the East Antarctic craton: The final suture between east and west Gondwana?[J]. Geology, 29(5): 463-466.
[30] Cawood P A, Zhao G C, Yao J L, Wang W, Xu Y J, Wang Y J. 2017. Reconstructing South China in Phanerozoic and Precambrian supercontinents[J]. Earth-Science Reviews, 186: 173-194.
[31] Chang L X, Zhang S H, Li H Y, Xian H B, Wu H C, Yang T S. 2022. New Paleomagnetic Insights Into the Neoproterozoic Connection Between South China and India and Their Position in Rodinia[J]. Geophysical Research Letters, 49(10): e2022GL098348.
[32] Chen C H, Lee C Y, Liu Y H, Xiang H, Zeng W, Zhou H W. 2018. Precambrian protoliths and Phanerozoic overprinting on the Wuyishan terrain (South China): New evidence from a combination of LA-ICPMS zircon and EMP monazite geochronology[J]. Precambrian Research, 307: 229-254.
[33] Chen Q, Zhao G C, Sun M. 2021. Protracted northward drifting of South China during the assembly of Gondwana: Constraints from the spatial-temporal provenance comparison of Neoproterozoic ?Cambrian strata[J]. Geological Society of America Bulletin, 133(9-10): 1947-1963.
[34] Chew D, O’Sullivan G, Caracciolo L, Mark C, Tyrrell S. 2020. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis[J]. Earth-Science Reviews, 202: 103093.
[35] Condie K C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales[J]. Chemical Geology, 104(1-4): 1-37.
[36] Daczko N R, Halpin J A, Fitzsimons I C W, Whittaker J M. 2018. A cryptic Gondwana-forming orogen located in Antarctica[J]. Scientific Reports, 8(1): 8371.
[37] Fitzsimons I C W. 2000. Grenville-age basement provinces in East Antarctica: Evidence for three separate collisional orogens[J]. Geology, 28(10): 879-882.
[38] Goodge J W, Williams I S, Myrow P. 2004. Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross orogen, Antarctica: Detrital record of rift-, passive-, and active-margin sedimentation[J]. Geological Society of America Bulletin, 116(9-10): 1253-1279.
[39] Guo R H, Hu X M, Garzanti E, Lai W, Yan B, Mark C. 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Xizang[J]. Earth-Science Reviews, 201: 103082.
[40] Hietpas J, Samson S, Moecher D, Schmitt A K. 2010. Recovering tectonic events from the sedimentary record: Detrital monazite plays in high fidelity[J]. Geology, 38(2): 167-170.
[41] Jing X Q, Yang Z Y, Evans D A D, Tong Y B, Xu Y C, Wang H. 2020. A pan-latitudinal Rodinia in the Tonian true polar wander frame[J]. Earth and Planetary Science Letters, 530: 115880.
[42] Lancaster P J, Daly J S, Storey C D, Morton A C. 2016. Interrogating the provenance of large river systems: multi-proxy in situ analyses in the Millstone Grit, Yorkshire[J]. Journal of the Geological Society, 174(1): 75-87.
[43] Li L M, Lin S F, Xing G F, Jiang Y, He J. 2017. First Direct Evidence of Pan-African Orogeny Associated with Gondwana Assembly in the Cathaysia Block of Southern China[J]. Scientific Reports, 7(1): 794.
[44] Li L M, Lin S F, Xing G F, Davis D W, Davis W J, Xiao W J, Yin C Q. 2013. Geochemistry and tectonic implications of late Mesoproterozoic alkaline bimodal volcanic rocks from the Tieshajie Group in the southeastern Yangtze Block, SouthChina[J].PrecambrianResearch,230:179-192.
[45] Li L M, Lin S F, Xing G F, Xiao F, Xiao W J. 2021. Identification of ca. 520 Ma mid-ocean-ridge?type ophiolite suite in the inner Cathaysia block, South China: Evidence from shearing-type oceanic plagiogranite[J]. Geological Society of America Bulletin, 134(7-8): 1701-1720.
[46] LiWX, Li X H, Li Z X. 2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance[J]. Precambrian Research, 136(1): 51-66.
[47] Li Z X, Li X H, Li W X, Ding S J. 2008. Was Cathaysia part of Proterozoic Laurentia? - new data from Hainan Island, south China[J]. Terra Nova, 20(2): 154-164.
[48] Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L, Bao C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 122(5-6): 772-793.
[49] Lu Y Y, Cao J Y, Fu J M, Liu L, Wu Q H, Yang X Y, Yang S X, Cheng S B, Qiu X F., He D. 2022. Discovery of a Hadean xenocrystic zircon in the Cathaysia Block[J]. Science Bulletin, 67(23): 2416-2419.
[50] Myrow P M, Hughes N C, Goodge J W, Fanning C M, Williams I S, Peng S, Bhargava O N, Parcha S K, Pogue K R. 2010. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician[J]. Geological Society of America Bulletin, 122(9-10): 1660-1670.
[51] Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715-717.
[52] Qi L, Xu Y J, Cawood P A, Du Y S. 2018. Reconstructing Cryogenian to Ediacaran successions and paleogeography of the South China Block[J]. Precambrian Research, 314: 452-467.
[53] Roser B P, Korsch R J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 67(1): 119-139.
[54] Rudnick R L, Gao S. 2014. Composition of the Continental Crust[M]. Treatise on Geochemistry (Second Edition), 4: 1-51.
[55] Shu L S, Deng P, Yu J H, Wang Y B, Jiang S Y. 2008. The age and tectonic environment of the rhyolitic rocks on the western side of Wuyi Mountain, South China[J]. Science in China Series D: Earth Sciences, 51(8): 1053-1063.
[56] Shu L S, Jahn B M, Charvet J, Santosh M, Wang B, Xu X S, Jiang S Y. 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China): Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 314(1): 154-186.
[57] Taylor S R, Mclennan S M. 1985. The continental crust: Its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks [M]. Blackwell Scientific Publication.
[58] Wan Y S, Liu D Y, Wilde S A, Cao J J, Chen B, Dong C Y, Song B, Du L L. 2010. Evolution of the Yunkai Terrane, South China: Evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope[J]. Journal of Asian Earth Sciences, 37(2): 140-153.
[59] Wan Y S, Liu D Y, Xu M H, Zhuang J M, Song B, Shi Y R, Du L L. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units[J]. Gondwana Research, 12(1-2): 166-183.
[60] Wang K X, Sun L Q, Sun T, Huang H, Qin L S. 2018. Provenance, weathering conditions, and tectonic evolution history of the Cambrian meta-sediments in the Zhuguangshan area, Cathaysia Block [J]. Precambrian Research, 311: 195-210.
[61] Wang L J, Lin S F, Xiao W J. 2023. Yangtze and Cathaysia blocks of South China: Their separate positions in Gondwana until early Paleozoic juxtaposition[J]. Geology, 51(8): 723-727.
[62] Wang W, Cawood P, Pandit M, Zhao J H, Zheng J P. 2019. No collision between Eastern and Western Gondwana at their northern extent[J]. Geology, 47(4): 308-312.
[63] Wang W, Zeng M F, Zhou M F, Zhao J H, Zheng J P, Lan Z F. 2018. Age, provenance and tectonic setting of Neoproterozoic to early Paleozoic sequences in southeastern South China Block: Constraints on its linkage to western Australia-East Antarctica[J]. Precambrian Research, 309: 290-308.
[64] WangW, Zhou M F. 2013. Petrological and Geochemical Constraints On Provenance, Paleoweathering, and Tectonic Setting of the Neoproterozoic Sedimentary Basin In the Eastern Jiangnan Orogen, South China[J]. Journal of Sedimentary Research, 83(11): 974-993.
[65] Wang W, Cawood P A, Pandit M K, Xia X P, Raveggi M, Zhao J H, Zheng J P, Qi L. 2021. Fragmentation of South China from greater India during the Rodinia-Gondwana transition[J]. Geology, 49(2): 228-232.
[66] Wang Y J, Zhang F F, Fan W M, Zhang G W, Chen S Y, Cawood P A, Zhang A M. 2010. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics, 29(6): TC6020.
[67] Wu L, Jia D, Li H B, Deng F E I, Li Y Q. 2010. Provenance of detrital zircons from the late Neoproterozoic to Ordovician sandstones of South China: implications for its continental affinity[J]. Geological Magazine, 147(6): 974-980.
[68] Xia Y, Xu X S, Niu Y L, Liu L. 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: The magmatism in various tectonic settings and continent-arc-continent collision[J]. Precambrian Research, 309: 56-87.
[69] Xiang H, Zhang L, Zhou H W, Zhong Z Q, Zeng W, Liu R, Jin S. 2008. U-Pb zircon geochronology and Hf isotope study of metamorphosed basic-ultrabasic rocks from metamorphic basement in southwestern Zhejiang: The response of the Cathaysia Block to Indosinian orogenic event[J]. Science in China Series D: Earth Sciences, 51(6): 788-800.
[70] Xiong C, Niu Y L, Chen H D, Chen A Q, Zhang C G, Li F, Yang S, Xu S L. 2019. Detrital zircon U-Pb geochronology and geochemistry of late Neoproterozoic-early Cambrian sedimentary rocks in the Cathaysia Block: Constraint on its palaeo-position in Gondwana supercontinent[J]. Geological Magazine, 156(9): 1587-1604.
[71] Xu Y J, Cawood P A, Du Y S, Hu L S, Yu W C, Zhu Y H, Li W C. 2013. Linking south China to northern Australia and India on the margin of Gondwana: Constraints from detrital zircon U-Pb and Hf isotopes in Cambrian strata[J]. Tectonics, 32(6): 1547-1558.
[72] Xu Y J, Cawood P A, Du Y S, Zhong Z Q, Hughes N C. 2014. Terminal suturing of Gondwana along the southern margin of South China Craton: Evidence from detrital zircon U-Pb ages and Hf isotopes in Cambrian and Ordovician strata, Hainan Island[J]. Tectonics, 33(12): 2490-2504.
[73] Xu Y J, Cawood P A, Zhang H C, Zi J W, Zhou J B, Li L X, Du Y S. 2019. The Mesoproterozoic Baoban Complex, South China: A missing fragment of western Laurentian lithosphere[J]. Geological Society of America Bulletin, 132(7-8): 1404-1418.
[74] Xu Y J, Liang X, Cawood P A, Zi J W, Zhang H C, Liu J, Du Y S. 2022. Revisiting the paleogeographic position of South China in Gondwana by geochemistry and U-Pb ages of detrital monazite grains from Cambrian sedimentary rocks[J]. Lithos, 430-431: 106879.
[75] Xue E K, Wang W, Huang S F, Lu G M. 2019. Detrital zircon U-Pb-Hf isotopes and whole-rock geochemistry of Neoproterozoic-Cambrian successions in the Cathaysia Block of South China: Implications on paleogeographic reconstruction in supercontinent[J]. Precambrian Research, 331: 105348.
[76] Xue E K, Wang W, Zhou M F, Pandit M K, Huang S F, Lu G M. 2021. Late Neoproterozoic ? early Paleozoic basin evolution in the Cathaysia Block, South China: Implications of spatio-temporal provenance changes on the paleogeographic reconstructions in supercontinent cycles[J]. Geological Society of America Bulletin, 133(3-4): 717-739.
[77] Xue E K, Chew D, Drakou F, Wang W. 2023. Paleogeographical reconstruction of the South China Block during Gondwana assembly using detrital apatite: Pan-African source affinity concealed by detrital zircon[J]. Geological Society of America Bulletin, 136(5-6):2063-2074.
[78] Xue E K, Wang W, Chew D, Pandit M K, Deng X, Tian Y, Tong X R, Zhao J H. 2024a. Episodic water-fluxed anataxis recorded by migmatites from the Paleozoic Wuyi-Yunkai Orogeny in South China[J]. Gondwana Research, 126: 96-111.
[79] Xue E K, Chew D, Drakou F, Wang W. 2024b. Detrital multi-mineral provenance constraints on the reconstruction of the South China Block within Gondwana [J]. Earth-Science Reviews, 253: 104798.
[80] Yang Z Y, Jiang S Y. 2019. Detrital zircons in metasedimentary rocks of Mayuan and Mamianshan Group from Cathaysia Block in northwestern Fujian Province, South China: New constraints on their formation ages and paleogeographic implication[J]. Precambrian Research, 320: 13-30.
[81] Yang Z Y, Sun Z M, Yang T S, Pei J L. 2004. A long connection (750-380 Ma) between South China and Australia: paleomagnetic constraints[J]. Earth and Planetary Science Letters, 220(3): 423-434.
[82] Yao J L, Cawood P A, Shu L S, Zhao G C. 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 196: 102872.
[83] Yao J L, Shu L S, Santosh M. 2011. Detrital zircon U-Pb geochronology, Hf-isotopes and geochemistry—New clues for the Precambrian crustal evolution of Cathaysia Block, South China[J]. Gondwana Research, 20(2-3): 553-567.
[84] Yao W H, Li Z X. 2016. Tectonostratigraphic history of the Ediacaran-Silurian Nanhua foreland basin in South China[J]. Tectonophysics, 674: 31-51.
[85] Yao W H, Li Z X, Li W X, Li X H. 2017. Proterozoic tectonics of Hainan Island in supercontinent cycles: New insights from geochronological and isotopic results[J]. Precambrian Research, 290: 86-100.
[86] Yao W H, Li Z X, Li W X, Li X H, Yang J H. 2014. From Rodinia to Gondwanaland: A tale of detrital zircon provenance analyses from the southern Nanhua Basin, South China[J]. American Journal of Science, 314(1): 278-313.
[87] Yao W H, Li Z X, Spencer C J, Martin E L. 2018. Indian-derived sediments deposited in Australia during Gondwana assembly[J]. Precambrian Research, 312: 23-37.
[88] Yu J H, O’reilly S Y, Wang L J, Griffin W L, Zhang M, Wang R C, Jiang S Y, Shu L S. 2008. Where was South China in the Rodinia supercontinent?[J]. Precambrian Research, 164(1-2): 1-15.
[89] Yu J H, Wang L J, O’reilly S Y, Griffin W L, Zhang M, Li C Z, Shu L S. 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane), eastern Cathaysia Block, China[J]. Precambrian Research, 174(3-4): 347-363.
[90] Zhang L M, Zhang Y Z, Cui X, Cawood P A, Wang Y J, Zhang A M. 2019. Mesoproterozoic rift setting of SW Hainan: Evidence from the gneissic granites and metasedimentary rocks[J]. Precambrian Research, 325: 69-87.
[91] Zhang S H, Li H Y, Jiang G Q, Evans D A D, Dong J, Wu H C, Yang T S, Liu P J, Xiao Q S. 2015. New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications[J]. Precambrian Research, 259: 130-142.
[92] Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54.
[93] Zhao L, ZhaiMG, Zhou XW, Santosh M, Ma X D. 2015. Geochronology and geochemistry of a suite of mafic rocks in Chencai area, South China: Implications for petrogenesis and tectonic setting[J]. Lithos, 236-237: 226-244.
[94] Zhou X Y, Yu J H, O'Reilly S Y, Griffin W L, Sun T, Wang X L, Tran M, Nguyen D. 2018. Component variation in the late Neoproterozoic to Cambrian sedimentary rocks of SW China-NE Vietnam, and its tectonic significance[J]. Precambrian Research, 308: 92-110.
[95] Zoleikhaei Y, Mulder J A, Cawood P A. 2022. Evaluating sediment recycling through combining inherited petrogenic and acquired sedimentary features of multiple detrital minerals[J]. Basin Research, 34(3): 1055-1083.
-
计量
- 文章访问数: 80
- PDF下载数: 20
- 施引文献: 0

下载: