Geochemistry and Genesis of Concealed Granite in Huxingshan Tungsten-Beryllium Ore District, Northeast Hunan Province
-
摘要: 湘东北虎形山钨铍多金属矿床为一大型的石英、云英岩细脉带型白钨矿床和绿柱石铍矿床。本文通过对矿区内新发现的隐伏花岗岩体详细的岩石地球化学分析,探讨了该岩体的成因、物质来源和构造环境,以期为区域岩浆作用与成矿关系研究提供理论支撑。结果表明,虎形山花岗岩为富SiO2(71.86%~73.22%)和Al2O3(13.99%~14.55%),贫TFe2O3(1.17%~1.63%)和MgO(0.28%~0.36%),且相对贫钠富钾(K2O/Na2O介于1.11~1.78 之间)的高钾钙碱性、过铝质花岗岩,并具有强烈富集轻稀土元素(La N /Yb N =9.29~21.9)和大离子亲石元素(Rb、Ba、U、K)而相对亏损重稀土元素和高场强元素(Nb、Ti、P)的特征;虎形山花岗岩是在较低压力(<5 kbar)和初始温度为707~746℃环境中经高程度分离结晶作用(斜长石、钾长石、磷灰石等)形成的S型花岗岩,其地壳源区为泥质岩和砂屑岩组成的冷家溪群;结合区域构造演化,本文认为燕山期古太平洋板块的低角度俯冲造成湘东北地区地壳发生强烈的变形,随后区域应力的减弱使得增厚的岩石圈发生拆沉,在此情况下,地壳减薄或幔源物质底侵引起了该地区强烈的岩浆活动,进而形成了虎形山花岗岩。Abstract: The tungsten-beryllium polymetallic deposit at Huxingshan in northeastern Hunan Province is a large-scale quartz and greisen vein-belt type scheelite and beryl beryllium deposit. To investigate its genesis, material source and tectonic environment, we carried out detailed rock geochemical analyses on the newly discovered concealed granite bodies in the Huxingshan mining area, so to provide the theory support for the relationship between local magmatism and mineralization. The results show that the Huxingshan granite is a series of high-K calc-alkaline peraluminous granite rich in SiO2 (71.86% ~73.22% ) and Al2O3 (13.99% ~ 14.55%), poor in TFe2O3 (1.17%~1.63%) and MgO (0.28%~0.36%), and relatively poor in Na and rich in K (with the (K2O /Na2O) ration between 1.11 and 1.78). It is characterized by strong enrichment of light rare earth elements (La N /Yb N =9.29~21.9) and large ion lithophile elements (Rb, Ba, U, K), and relative depletion of heavy rare earth elements and high field strength elements (Nb, Ti, P). The geochemical characteristics show that Huxingshan granite is an S-type granite formed in an environment of lower pressure (< 5 kbar) and an initial temperature of 727~785℃. It was formed by a high degree of fractional crystallization (plagioclase, potash feldspar, apatite, etc.), and its crust source area is Lengjiaxi Group composed of mudstone and sandstone. Combined with the tectonic evolution history of the region, this study concluded that the low-angle subduction of the Paleo-Pacific Plate during the Yanshan Period caused strong deformation of the crust in the northeast Hunan region, and the subsequent weakening of regional stresses led to the detachment of the thickened lithosphere, in which case the crustal thinning or underplating of mantle source material had caused intense magmatism in the region, which resulted in the formation of the Huxingshan Granite.
-
-
[1] 柏道远,李彬,曾广乾,杨俊.2024.湖南省印支运动应力场特征及其动力机制[J].华南地质, 40(2),252-269.
[2] 邓平,舒良树,谭正中.2003.诸广—贵东大型铀矿聚集区富铀矿成矿地质条件[J].地质论评,49(5):486-494.
[3] 侯增谦,潘小菲,杨志明,曲晓明.2007.初论大陆环境斑岩铜矿[J].现代地质,21(2):332-351.
[4] 湖南省地质矿产局.1988.湖南省区域地质志[M].北京:地质出版社.
[5] 湖南省有色地质勘查局247 队.2015.湖南省临湘市虎形山矿区钨矿详查报告[R].
[6] 黄凡,罗照华,卢欣祥,高飞,陈必河,杨宗锋,潘颖,李德东.2009. 东沟含钼斑岩由太山庙岩基派生?[J].矿床地质,28(5): 569-584.
[7] 黄兰椿,蒋少涌.2012.江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb 年代学、地球化学及成因研究[J].岩石学报,28(12):3887-3900.
[8] 贾小辉,李响,杨文强.2023.华南早侏罗世花岗质侵入体的岩石成因及构造背景——兼论其关键金属成矿作用[J].华南地质,39(2):186-202.
[9] 李鹏春,许德如,陈广浩,夏斌,贺转利,符巩固.2005.湘东北金井地区花岗岩成因及地球动力学暗示:岩石学、地球化学和Sr-Nd同位素制约[J].岩石学报,21(3): 921-934.
[10] 李先富,余研.1991.湖南桃林幕阜山地洼期变质核杂岩及剥离断层有关的铅锌矿化作用[J].大地构造与成矿学,15(2):90-99.
[11] 李小伟,黄雄飞,黄丹峰.2011.花岗岩中常用压力计的应用评述[J].高校地质学报,17(3):415-422.
[12] 陆建军,章荣清,黄旭栋,张强,李晓宇,周维法,黄迪,黄玉,马东升,姜耀辉.2022.江南造山带钨锡稀有金属矿床成矿作用特征[J].华南地质,38(3):359-381.
[13] 路远发,李文霞.2021.CIPW 标准矿物计算方法与程序设计[J].华南地质,37(3):348-360.
[14] 吕庆田,董树文,史大年, 汤井田,江国明,张永谦,徐涛,Sino-Probe-03-CJ 项目组.2014.长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述[J].岩石学报,30(4):889-906.
[15] 孟庆秀,张健,耿建珍,张传林,黄文成. 2013.湘中地区冷家溪群和板溪群锆石U-Pb 年龄、Hf 同位素特征及对华南新元古代构造演化的意义[J].中国地质, 40(1): 191-216.
[16] 潘大鹏,王迪,王孝磊.2017.赣西北大湖塘石门寺钨矿区花岗岩的成因及其对钨矿的指示意义[J].中国地质,44(1): 118-135.
[17] 沈萍.2010.湖南省临湘市崔家坳矿区钨矿资源储量核查报告[R].
[18] 舒良树.2012.华南构造演化的基本特征[J].地质通报,31(7):1035-1053.
[19] 唐朝永,陈云华,游先军,刘利生,张强录,晏月平,王开朗,任杰.2013.湖南虎形山钨铍多金属矿床地质特征及成因初探[J].矿产与地质,27(5):353-362.
[20] 王楠,吴才来,秦海鹏.2017.川西义敦岛弧中生代典型花岗岩体矿物学、地球化学特征及岩浆来源探讨[J].地质论评,63(4):981-1000.
[21] 王德滋,沈渭洲.2003.中国东南部花岗岩成因与地壳演化[J].地学前缘,10(3):209-220.
[22] 王开朗,游先军,张强录,刘利生,唐朝永,陈云华,晏月平,任杰.2013.湖南省临湘市虎形山地区铷锶同位素年代学研究[J].矿产与地质,27(2):151-157.
[23] 王连训,马昌前,张金阳,陈玲,张超.2008.湘东北早白垩世桃花山—小墨山花岗岩体岩石地球化学特征及成因[J].高校地质学报,14(3):334-349.
[24] 王晓霞,王涛,陈小丹,柯昌辉,杨阳.2024.花岗质岩石中黑云母成分区域性变化对深部物质示踪及成矿的约束:以秦岭地区为例[J].岩石学报,40(3):811-826.
[25] 吴福元,郭春丽,胡方泱,刘小驰,赵俊兴,李晓峰,秦克章.2023.南岭高分异花岗岩成岩与成矿[J].岩石学报,39(1):1-36.
[26] 徐斌,蒋少涌,罗兰.2015.江西彭山锡多金属矿集区尖峰坡锡矿床LA-MC-ICP-MS 锡石U-Pb 测年及其地质意义[J].岩石学报,31(3):701-708.
[27] 许德如,贺转利,李鹏春,陈广浩,夏斌,符巩固.2006.湘东北地区晚燕山期细碧质玄武岩的发现及地质意义[J].地质科学,41(2):311-332.
[28] 许德如,王力,李鹏春,陈广浩,贺转利,符巩固,吴俊.2009.湘东北地区连云山花岗岩的成因及地球动力学暗示[J].岩石学报,25(5):1056-1078.
[29] 张德会.2020.成矿作用地球化学(第二版)[M].北京:地质出版社,1-481.
[30] 张九龄.1989.湖南桃林铅锌矿床控矿条件及成矿预测[J].地质与勘探,25(4):1-7.
[31] 周新民.2007.南岭地区晚中生代花岗岩成因与岩石圈动力学演化[M].北京:科学出版社.
[32] Cai K D, Sun M, Yuan C, Zhao G C, Xiao W J, Long X P, Wu F Y. 2011. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China[J]. Lithos, 127(1-2): 261-281.
[33] Castro A, Pati?o Douce A E, Gurllermo Corretgé L, De la Rosa J D, El-Biad M, El-Hmidi H. 1999. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of granite petrogenesis[J]. Contributions to Mineralogy and Petrology, 135(2-3): 255-276.
[34] Chappell B W, Bryant C J, Wyborn D. 2012. Peraluminous I-type granites[J]. Lithos, 153: 142-153.
[35] Chappell B W, White A J R. 1992. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26.
[36] Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks[J]. Journal of petrology, 42(11): 2033-2048.
[37] Jiang Y H, Zhao P, Zhou Q, Liao S Y, Jin G D. 2011. Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos, 121(1-4): 55-73.
[38] Johannes W, Holtz F. 1996. Petrogenesis and experimental petrology of granitic rocks[M]. Springer, Berlin, 1-335.
[39] King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371-391.
[40] Li B, Jiang S Y, Zhang Q, Zhao H X, Zhao K D. 2015. Cretaceous crust-mantle interaction and tectonic evolution of Cathaysia Block in South China: Evidence from pulsed mafic rocks and related magmatism[J]. Tectonophysics, 661: 136-155.
[41] Li X H. 2000. Cretaceous magmatism and lithospheric extension in Southeast China[J]. Journal of Asian Earth Sciences, 18(3): 293-305.
[42] Li X H., Li W X, Li Z X, Lo C H, Wang J, Ye M F, Yang Y H. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1-2): 117-128.
[43] Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 35(2): 179-182.
[44] Liu Q Q, Li B, Shao Y J, Lu A H, Lai J Q, Li Y F, Luo Z Z. 2017. Molybdenum mineralization related to the Yangtze's lower crust and differentiation in the Dabie Orogen: Evidence from the geochemical features of the Yaochong porphyry Mo deposit[J]. Lithos, 282: 111-127.
[45] Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643.
[46] Mao J R, Takahashi Y, Kee W S, Li Z L, Ye H M, Zhao X L, Liu K, Zhou J. 2011. Characteristics and geodynamic evolution of Indosinian magmatism in South China: A case study of the Guikeng pluton[J]. Lithos, 127(3-4): 535-551.
[47] Masberg P, Mihm D, Jung S. 2005. Major and trace element and isotopic (Sr, Nd, O) constraints for Pan-African crustally contaminated grey granite gneisses from the southern Kaoko belt, Namibia[J]. Lithos, 84(1): 25-50.
[48] McDonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical Geology, 120(3-4): 223-253.
[49] Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4):215-224.
[50] Miller C F. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources? [J]. The Journal of Geology, 93(6): 673-689.
[51] Pati?o Douce A E. 1993. Titanium substitution in biotite: An empirical model with applications to thermometry, O2and H2O barometries, and consequences for biotite stability [J]. Chemical Geology, 108(1-4): 133-162.
[52] Pati?o Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? [J]. Geological Society, London, Special Publications, 168(1): 55-75.
[53] Pearce J A, Harris N B, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of petrology, 25(4): 956-983.
[54] Pirajno F, Bagas L. 2002. Gold and silver metallogeny of the South China Fold Belt: A consequence of multiple mineralizing events[J]. Ore Geology Reviews, 20(3-4): 109-126.
[55] Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247-263.
[56] Shu L S, Zhou X M, Deng P, Wang B, Jiang S Y, Yu J H, Zhao X X. 2009. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis[J]. Journal of Asian Earth Sciences, 34(3): 376-391.
[57] Skjerlie K P, Pati?o Douce A E, Dana Johnston A. 1993. Fluid absent melting of a layered crustal protolith-implications for the generation of anatectic granites[J]. Contributions to Mineralogy and Petrology, 114: 365-378.
[58] Sun S S, McDonough W F, 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.
[59] Sylvester P J. 1998. Postcollisional strongly peraluminous granites[J]. Lithos, 45: 29-44.
[60] Wang Y J, Fan W M, Guo F, Peng T P, Li C W. 2003. Geochemistry of Mesozoic mafic rocks adjacent to the Chenzhou-Linwu fault, South China: Implications for the lithospheric boundary between the Yangtze and Cathaysia blocks[J]. International Geology Review, 45(3): 263-286.
[61] Watson E B, Harrison T M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295-304.
[62] Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419.
[63] Wones D R, Eugster H P. 1965. Stability of biotite: Experiment, theory, and application[J]. American Mineralogist, 50(9):1228-1272.
[64] Xu J W, Lai J Q, Li B, Lu A H, Rocholl A, Dick J M, Peng J T, Wang K L. 2020. Tungsten mineralization during slab subduction: A case study from the Huxingshan deposit in northeastern Hunan Province, South China[J]. Ore Geology Reviews, 124: 103657.
[65] Yang S Y, Jiang S Y, Zhao K D, Jiang Y H, Ling H F, Luo L. 2012. Geochronology, geochemistry and tectonic significance of two Early Cretaceous A-type granites in the Gan-Hang Belt, Southeast China[J]. Lithos, 150: 155-170.
[66] Zeng R Y, Lai J Q, Mao X C, Li B, Ju P J ,Tao S L. 2016. Geochemistry, zircon U-Pb dating and Hf isotopies composition of Paleozoic granitoids in Jinchuan, NW China: Constraints on their petrogenesis, source characteristics and tectonic implication[J]. Journal of Asian Earth Sciences, 121: 20-33.
[67] Zhao G C. 2015. Jiangnan Orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 27(3): 1173-1180.
[68] Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326(3): 269-287.
[69] Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33.
-
计量
- 文章访问数: 50
- PDF下载数: 6
- 施引文献: 0