Remote Sensing Interpretation of Alteration Anomaly Based on Fractal Theory: A Case Study of Yangshan County, Guangdong Province
-
摘要: 围岩蚀变异常是热液型矿床的重要找矿标志,运用遥感技术解译提取围岩蚀变信息是辅助地质找矿的重要手段。本文采用主成分分析法提取广东阳山地区Landsat-5 的TM遥感影像中铁染和泥化蚀变信息,对影像中所提取的异常主成分进行“像元-面积”划分并统计像元个数,再将异常阈值进行分形非线性划分,得到更为精准的分级方法。门限法是基于突变点选择阈值进行等级划分,在提取蚀变异常的结果中往往会包含大量的背景信息,利用分形理论确定临界值进行分级减少了这些信息的影响。本次研究通过门限法和分形方法两种划分方法对研究区的蚀变异常进行对比,最后根据研究区蚀变异常信息的分形特征,利用求和方法对研究区的铁染和泥化蚀变异常信息进行分级。结果表明,相对于门限法,在遥感蚀变信息提取中分形方法加强了阈值选取的准确度,并发现研究区泥化蚀变与铁染蚀变主要分布于北东部及北部区域,其它区域小面积离散分布,这可为矿产勘查工作提供更好的技术支撑。Abstract: The abnormal information of wall rock alteration is an important prospecting indicator for hydrothermal deposits. The interpretation of wall rock alteration information by remote sensing technology is an important method to extract alteration information. This article used principal component analysis to extract iron contamination and mud alteration information from Landsat-5 TM remote sensing images in the Yangshan area of Guangdong Province. The abnormal principal components extracted from the images were divided into "pixel-area" and the number of pixels was counted. Then, the abnormal threshold was divided into fractal nonlinear divisions to achieve a more accurate classification method. The threshold method is based on the mutation point selection threshold for grading. The results of extracting alteration anomalies often contain a large amount of background information, impact of which was reduced by using the fractal theory to determine the critical value for grading. This study compared threshold method with fractal method used in the alteration anomalies in the study area . Finally, based on the fractal characteristics of the alteration anomaly information, the summation method was used to classify the iron staining and mud alteration anomaly information in the study area. The results show that compared with the threshold method, the fractal method enhances the accuracy of threshold selection in the extraction of remote sensing alteration information. It is found that the mud alteration and iron staining alteration in the study area are mainly distributed in the northeastern and northern regions, and are scattered in a small area in other regions, which provides better technical support and data support for mineral exploration.
-
-
[1] 陈超民,冷成彪,司国辉.2020.基于GIS 与层次分析法的综合成矿预测—以新疆库米什地区为例[J].黄金科学技术,28(2):213-227.
[2] 成秋明,张生元,左仁广,陈志军,谢淑云,夏庆霖,徐德义,姚凌青.2009.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘,16(2):185-198.
[3] 陈涛.2012.基于TM数据的某矿区遥感矿化蚀变信息提取研究[J].皖西学院学报,28(2):125-128.
[4] 傅良刚,南争路,冼源宏.2015.广东阳山县矽卡岩型银铅锌矿床控矿条件与成因分析[J].黄金,36(9):19-23.
[5] 范玉海,王辉,杨兴科,彭齐鸣,秦绪文,杨金中,张少鹏,谭富荣.2018.基于高分辨率遥感数据的稀有金属矿化带勘查[J].国土资源遥感,30(1):128-134.
[6] 胡滨.2020.基于多源遥感数据的西藏多龙地区热液蚀变矿物提取方法研究[D].中国地质大学博士学位论文.
[7] 李程.2021.深部地质地球化学三维定量矿产预测方法研究[D].成都理工大学博士学位论文.
[8] 李文超.2023.云南普朗铜矿遥感构造解译及蚀变信息精细化提取[D].昆明理工大学硕士学位论文.
[9] 骆勇军.2020.广东省阳山县深坑矿区石寨矿点成矿潜力分析[J].甘肃冶金,42(4):105-108.
[10] 马建文.1997.利用TM 数据快速提取含矿蚀变带方法研究[J].遥感学报,1(3):208-213+244.
[11] 南争路,梁金龙,毛世东,冼源宏.2019.广东阳山县铅锌多金属矿地质特征及元素赋存状态[J].东华理工大学学报(自然科学版),42(1):37-44.
[12] 吴畅宇,代晶晶,陈伟,江彪,王登红,王成良,王文君,孙洪章,王强,陈玮,蒲秀浪,马文文.2023.内蒙古苏莫查干敖包萤石矿区遥感蚀变信息提取及其找矿指示意义[J].矿床地质,42(4):845-858.
[13] 王晓鹏,谢志清,伍跃中.2002.ETM 图像数据中矿化蚀变信息的提取—以西昆仑塔什库尔干地区为例[J].地质与资源,11(2):119-122.
[14] 吴志春,郭福生,李华亮,许欢,张树明,黎广荣,张万良,祝民强.2020.主成分分析法在相山火山盆地蚀变分带解译中的应用[J].大地构造与成矿学,44(3): 385-403.
[15] 余敏,温兴平,徐俊龙,晁江琴,杨炀,王军,易邦进.2014.基于分形的遥感蚀变异常提取在毛坪铅锌矿中的应用[J].遥感技术与应用,29(5):853-860.
[16] 张船红,何政伟.2013.基ETM+和ASTER数据的矿化蚀变信息提取[J].地理空间信息,11(4):64-66+187.
[17] 赵静,苏程,王习之,黄智才,章孝灿.2016.西澳大利亚伊尔加恩金矿遥感找矿模型[J].遥感信息,31(1):69-76.
[18] 赵少杰,钱建平,陈宏毅.2011.遥感线性构造分形统计和蚀变信息提取在桂东地区金铅锌锡多金属成矿预测中的应用[J].大地构造与成矿学,35(3):364-371.
[19] 张廷斌, 唐菊兴, 黄丁发.2009. 矿化蚀变信息提取的TM/ETM+遥感影像模式[J].遥感信息,(2):47-51.
[20] 赵忠海,陈俊,乔锴,崔晓梦,梁杉杉,李成禄.2023.基于分形理论的遥感蚀变信息和构造分析研究—以黑龙江多宝山地区为例[J].现代地质,37(1):153-163.
[21] 赵芝玲,王萍,荆林海,孙彦峰.2016.用ASTER数据提取植被覆盖区遥感铁矿化蚀变信息[J]. 金属矿山,(10):109-115.
[22] Asl R A, Afzal P, Adib A, Yasrebi A B.2015.Application of multifractal modeling for the identification of alteration zones and major faults based on ETM+ multispectral data[J]. Arabian Journal of Geosciences, 8(5):9517-9530.
[23] Crosta A P, Moore J M. 1989. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in Greenstone belt terrain[A].//Proceedings of the Seventh Thematic Conference on Remote Sensing for Exploration Geology: 1173-1187.
[24] Daya A A, Afzal P. 2015. A comparative study of concentration- area(C-A)and spectrum-area(S-A)fractal models for separating geochemical anomalies in Shorabhaji region, NW Iran[J]. Arabian Journal of Geosciences, 8(10): 8263-8275.
[25] Forouzan M, Arfania R.2020.Integration of the bands of ASTER, OLI, MSI remote sensing sensors for detection of hydrothermal alterations in southwestern area of the Ardestan, Isfahan Province, Central Iran[J]. The Egyptian Journal of Remote Sensing and Space Sciences,23(2): 145-157.
[26] Mandelbrot B B . 1967. How Long Is the Coast of Britain?Statistical Self-Similarity and Fractional Dimension[J]. Science, 156(3775): 636-638.
[27] Mehdi M, Mehdi H, Amir S. 2015. Integration of concentration-area fractal model and relative absorption band depth method for mapping hydrothermal alterations using ASTER data [J]. Remote Sensing Applications: Society and Environment, 7(10):13878-13894.
[28] Shahriari H, Ranjbar H, Honarmand M. 2013. Image Segmentation for Hydrothermal Alteration Mapping Using PCA and Concentration-Area Fractal Model[J]. Natural Resources Research, 22(3):191-206.
[29] Wambo J D T, Pour A B, Ganno S, Asimow P D, Zoheir B, Salles R D R, Nzenti J P, Pradhan B, Muslim A M. 2020. Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: A case study of the Ngoura-Colomines goldfield, eastern Cameroon[J]. Ore Geology Reviews, 122:103530.
[30] Zeinelabdein K A E, El-Nadi A H H, Babiker I S. 2020. Prospecting for gold mineralization with the use of remote sensing and GIS technology in North Kordofan State, central Sudan [J]. Scientific African, 10:e00627.
-
计量
- 文章访问数: 42
- PDF下载数: 8
- 施引文献: 0