Characteristics of Distribution and Genetic Mechanism of Acidic Groundwater in Zhuhai City
-
摘要: 酸性地下水是我国南方广泛存在的水环境问题,查明酸性地下水的分布特征和成因机制,对区域地下水开发利用和水资源保护具有重要的科学意义。本文系统采集了珠海市不同类型的地下水样品211 件,采用数理统计和水文地球化学等方法,分析并研究了地下水pH值的空间分布、酸性地下水的主要成因和影响因素。结果表明,研究区地下水pH值为3.24 ~ 8.23,大多数为6.06 ~ 6.52,以酸性水为主。地下水pH值随着地势降低而升高,大部分丘陵、台地区裂隙水的碱度和酸中和能力较弱,地下水酸性较强,平原区孔隙承压水的碱度和酸中和能力相对较强,地下水呈中性;地下水的酸碱度与大气降水、包气带介质、水岩相互作用以及河流、潮汐作用有关;酸雨的补给、偏酸性的包气带介质、花岗岩和陆源碎屑岩中的硅酸盐矿物化学风化和硫化物矿物的氧化水解是丘陵区地下水偏酸性的主要原因。Abstract: Acidic groundwater is a widespread water environment problem in southern China. The research on distribution characteristics and genetic mechanism of acidic groundwater has great scientific significance for the development and utilization of regional groundwater and the protection of water resources. 211 groundwater samples in different aquifers in Zhuhai city were systematically collected, and the distribution and main genetic and influential factors of acidic groundwater were analyzed by the method of mathematical statistics and hydrogeochemistry. The results show that the groundwater is mainly acidic, with the pH from 3.24 to 8.23, and mostly between 6.06 and 6.52. The pH of groundwater increases with the decrease of the terrain. The alkalinity and acid neutralization ability of groundwater in most hilly platform areas are weak, and the acidity of groundwater is strong. The alkalinity and acid neutralization ability of pore phreatic water and pore confined water are relatively strong, and the groundwater is neutral. The acidity and alkalinity of groundwater in the study area are related to atmospheric precipitation, vadose zone medium, water-rock interaction, river and tidal action. The recharge of acid rain, acidic vadose zone medium, weathering and dissolution of silicate minerals in granite and terrigenous clastic rocks and the oxidative hydrolysis of sulfide minerals are the main genesis for the acidic groundwater.
-
Key words:
- acidic groundwater /
- characteristics of distribution /
- genetic mechanism /
- Zhuhai city
-
-
[1] 陈虹颖,赵新锋,何志东,范绍佳.2020. 2000—2016 年珠海市酸雨变化特征及酸雨概念模型[J].环境科学学报,40(6):1998-2006.
[2] 陈雯,余绍文,张宏鑫,刘怀庆.2023.北海市铁山港东部地区地下水水化学特征及形成机制[J]. 华南地质,39(1):95-107.
[3] 程新伟,孙继朝.2017.珠江三角洲地区酸性地下水分布特征及其影响因素研究[J].地下水,39(5):25-27+87.
[4] 付宇,董好刚,李立湘,方泓锦,袁东方,周施阳.2023.东江流域上游赣南地区酸性浅层地下水特征及成因探讨—以寻乌地区为例[J/OL].中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20230505.1251.020.html.
[5] 广东省地质调查院.2012.广东省珠江三角洲经济区农业地质与生态地球化学调查报告[R].
[6] 姜守俊,许兰芳,倪泽华,杨宏宇,涂世亮.2023.广东清远盆地地下水水文地球化学及流场特征[J].华南地质,39(4): 672-685.
[7] 荆继红,孙继朝,韩双平,黄冠星,陈玺,张玉玺,刘景涛.2010.珠江三角洲地区酸雨及酸化地下水分布特征[J].上海地质,(2):8-12.
[8] 李丹,孟庆强,张明珠.2015.广州市地下水源地浅层地下水pH 值的时空变化及其成因分析[J].地下水,37(6):3-5+17.
[9] 欧业成,陈润玲,黄喜新,周训.2009.北海市滨海地下水天然偏酸性特征及其影响因素[J].桂林工学院学报,29(4):449-454.
[10] 沈照理,朱婉华,钟佐燊.1993.水文地球化学基础[M].北京:地质出版社.
[11] 宋绵,龚磊,王新峰,李甫成,马涛.2018.江西兴国县偏酸性地下水研究现状[J].地球学报,39(5):581-586.
[12] 王国祯,刘偲嘉,于兴娜.2021.珠海市降水化学与沉降特征[J].环境科学研究,34(7):1612-1620.
[13] 王令占,李响,吴俊,贾小辉,王晶,张宗言,金巍,徐大良.2024.广东珠海地区三灶断裂带早白垩世以来多期活动、古应力特征及动力学背景[J].华南地质,40(2):323-342.
[14] 魏凤英.2014.珠海市应急供水地下水水质评价[J].地下水,36(5):126-128.
[15] 向任军.2012.中国南方典型酸雨区酸沉降特性及其环境效应研究[D].中南大学博士学位论文,3-5.
[16] 姚普.2015.珠海西部海岸带地下水锰的分布与成因[J].地下水,37(4):1-3+31.
[17] 张玉玺,孙继朝,陈玺,黄冠星,荆继红,刘景涛,向小平,王金翠,支兵发.2011.珠江三角洲浅层地下水pH值的分布及成因浅析[J].水文地质工程地质,38(1):16-21.
[18] 张宏鑫,余绍文,张彦鹏,陈雯,黎清华,刘怀庆,张庆玉.2022.广西防城港地区浅层地下水pH值时空分布、成因及对生态环境的影响[J].中国地质,49(3):822-833.
[19] 赵健.1999.海(咸)水入侵与浅层地下水水化学特征及变化研究[J].地理科学,19(6):525-531.
[20] 赵幸悦子,肖攀,黎义勇,邵长生.2021.赣南缺水地区浅层地下水水化学特征及成因分析——以银坑幅为例[J].华南地质,37(4):418-426.
[21] 周训,张华,赵亮,沈晔,严霞,欧业成,黄喜新.2007.浅析广西北海市偏酸性地下水的形成原因[J].地质学报,81(6):850-856.
[22] Adimalla N, Dhakate R, Kasarla A, Taloor A K. 2020. Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India[J]. Groundwater for Sustainable Development, 10: 100334.
[23] Appleyard S, Cook T. 2009. Reassessing the management of groundwater use from sandy aquifers: Acidification and base cation depletion exacerbated by drought and groundwater withdrawal on the Gnangara Mound, Western Australia[J]. Hydrogeology Journal, 17(3):579-588.
[24] Choi J, Hulseapple S M, Conklin M H, Harvey J W. 1998. Modeling CO2 degassing and pH in a stream-aquifer system[J]. Journal of Hydrology, 209(1-4): 297-310.
[25] Clohessy S, Appleyard S, Vogwill R. 2013. Groundwater acidification near the water table of the Superficial aquifer, Gnangara Mound, Swan Coastal Plain, Western Australia[J]. Applied Geochemistry, 36(1):140-152.
[26] Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088-1090.
[27] Preda M, Cox M E. 2000. Sediment-water interaction, acidity and other water quality parameters in a subtropical setting, Pimpama River, southeast Queensland[J]. Environmental Geology, 39(3-4): 319-329.
[28] Salehi S, Chizari M, Sadighi H, Bijani M. 2018. Assessment of agricultural groundwater users in Iran: a cultural environmental bias[J]. Hydrogeology Journal, 26(1): 285-295.
[29] Serrano L, Díaz-Paniagua C, Gómez-Rodríguez C, Florencio M, Marchand M A, Roelofs J G M, Lucassen E C H E T. 2016. Susceptibility to acidification of groundwater-dependent wetlands affected by water level declines, and potential risk to an early-breeding amphibian species[J]. Science of theTotal Environment, 571(1): 1253-1261.
[30] Takem G E, Kuitcha D, Ako A A, Mafany G T, Takounjou-Fouepe A, Ndjama J, Ntchancho R, Ateba B H, Chandrasekharam D, Ayonghe S N. 2015. Acidification of shallow groundwater in the unconfined sandy aquifer of the city of Douala, Cameroon, western Africa: Implications for groundwater quality and use[J]. Environmental Earth Sciences, 74(9): 6831-6846.
-
计量
- 文章访问数: 29
- PDF下载数: 8
- 施引文献: 0