Groundwater Genesis Model of Shicheng-Xunwu Fault Zone in Southeast Jiangxi province Based on Hydrochemical Characteristics
-
摘要: 石城-寻乌断裂带控制了红层盆地分布、花岗岩侵入与深部热水的运移,是江西温泉分布最密集的区域,也是赣南最主要的控热构造。但目前研究仅限于零散地热田,缺乏从区域构造带尺度对地热水成因进行系统研究。为了探明石城-寻乌断裂带地热水成因,文章研究了石城-寻乌断裂带已有的14 个地热田,采用水化学组分、同位素等方法手段开展研究。结果表明:(1)石城?寻乌断裂带整体可分为北段邵武?石城断裂,中段会昌浅层次热隆伸展构造及南段的寻乌断裂带三部分,地热水分别受上述3 条主断裂控制,且断裂带活动程度由北向南增强,导致不同地热田的热储特征存在较大差异;(2)地热水属中性偏弱碱性水,在石城及会昌盆地段阳离子以钠和钙离子为主,阴离子以硫酸根、重碳酸根为主;在南部寻乌断裂带阳离子则以钠离子为主,阴离子以重碳酸根为主。水化学组分主要来源于水岩相互作用,蒸发岩与硅酸盐岩是主要离子的物源;(3)地热水来源于周边山脉雨水的就近补给。研究区地热水对应表观年龄较长,且构造带由北向南有热水年龄、幔源物质比例与热储温度同步增大的趋势;(4)断裂带热水属未成熟水,但随断裂带向南延伸有逐渐成熟的趋势。热储温度在54~144℃之间,最低温在石城沔坊,最高温在寻乌南桥东,呈现向南升温的趋势,对应热水循环深度也向南逐渐增加,最大可超过3 km深(寻乌南桥东)。沿断裂带地热水空间分异明显,水岩相互作用强度、地热水成熟度、热储温度、循环深度及水年龄、大地热流值、岩浆活动、地震活动等均与断裂带活跃程度相关,且随断裂带向南延伸而增加。断裂带南桥东地热田潜力最大,可作为断裂带深循环中高温地热勘查优先区。Abstract: The Shicheng-Xunwu fault zone, which controls the distribution of red bed basin, granite intrusion and deep hot water migration, is the most densely distributed hot spring area in Jiangxi Province and the most important heat-controlling structure in southern Jiangxi Province. However, the current research is limited to scattered geothermal fields without the origin of geothermal water from the scale of regional tectonic zones. In order to find out the origin of geothermal water in the Shicheng-Xunwu fault zone, 14 geothermal fields in the Shicheng-Xunwu fault zone have been studied by means of hydrochemical components and isotopes. The results show that: (1) The Shicheng-Xunwu fault zone can be divided into three parts: the Shaowu-Shicheng fault in the north, the Huichang shallow thermal rise extensional structure in the middle and the Xunwu fault zone in the south. Geothermal water is controlled by the above three main faults respectively, and the activity degree of the fault zone increases from north to south, resulting in great differences in the heat storage characteristics of different geothermal fields; (2) The geothermal water belongs to neutral and weakly alkaline water. In Shicheng and Huichang basin, the cations are mainly sodium and calcium ions, and the anions are mainly sulfate and bicarbonate. In the southern Xunwu fault zone, the cation is mainly sodium ion, and the anion is mainly bicarbonate. The hydrochemical components are mainly derived from water-rock interaction, and evaporite and silicate rock are the main source of ions; (3) Geothermal water comes from the nearby recharge of rainwater from the surrounding mountains. The apparent age of geothermal water in the study area becomes longer, and the hot water age, the ratio of mantle source material and the heat storage temperature increase synchronously from north to south in the tectonic belt; (4) The hot water in the fault zone is immature water, but it tends to mature gradually as the fault zone extends southward. The heat storage temperature ranges from 54 ℃ to 144℃, with the lowest temperature in Mianfang, Shicheng, and the highest temperature in the east of Nanqiao,Xunwu, showing a trend of getting warm to the south, corresponding to gradual increase in depth of hot water circulation to the south, and the maximum depth can exceed 3 km (east of Nanqiao, Xunwu ). The spatial differentiation of geothermal water along the fault zone is obvious. Water-rock interaction intensity, geothermal water maturity, heat storage temperature, circulation depth and water age, earth heat flow value, magmatic activity and seismic activity are all related to the active degree of the fault zone, and increase with the southward extension of the fault zone. The Nanqiao East geothermal field in the fault zone has the greatest potential and can be used as the priority area for high temperature geothermal exploration in the deep cycle of the fault zone.
-
Key words:
- Shicheng-Xunwu fault zone /
- geothermal /
- hydrochemistry /
- genesis model
-
-
[1] 陈墨香.1991.中国地热资源的分布及其开发利用[J].自然资源,(5):40-46+58.
[2] 陈全根.2015.河源市高埔岗温泉勘查与评价[J].地下水,(1):45-46.
[3] 陈四宝,张缓缓,陈铖,叶永芳,董兴.2018.赣州会昌县坝背地区地热特征[J].中国煤炭地质,30(8):43-48.
[4] 成绪光,张玉树,刘捷.2020.赣南断陷盆地带地热水分布规律及成因探讨[J].低碳世界,10(11):118-119.
[5] 储小东.2016.江西省石城地热田成因机制及找矿预测[D].南京大学硕士学位论文.
[6] 段瑞.2022.兰州城区地热水化学特征及开采潜力评价[D].长安大学硕士学位论文.
[7] 海阔.2019.运用多种方法估算深部热储温度[D].中国地质大学硕士学位论文.
[8] 何晓亮.1985.江西中生代火山岩[J].地质通报,(5):13-28.
[9] 李学礼,史维浚,周文斌,孙占学,张卫民,牛小平,胡标,熊亮萍,邓孝,汪集旸.1992.江西大地热流[J].地质科学,(S1):383-385.
[10] 李志勇,黎义勇,黄长生,孙亚鑫,肖攀,邵长生,路韬.2020.赣江流域红层盆地典型构造样式与地下水动力学模式[J].地质通报,39(12):1873-1882.
[11] 刘大任.1997.邵武—河源断裂带活动性及分段评价[J].地质力学学报,3(2):54-60.
[12] 刘前进,黄迅,董毓,王盘喜.2019.江西邵武-河源断裂带会昌断裂控热机理研究[J]. 地质调查与研究,42(2):154-160.
[13] 梅惠呈.2018.江西省会昌县车心地热资源特征及评价[J].资源信息与工程,33(6):31-32.
[14] 邱辉,李朋,罗强,朱育坤,谢浴根,陈斌.2022.粤东北贝岭地热田地热地质特征及水化学分析[J].地质与勘探,58(1):158-167.
[15] 宋利红,杨宇,李海福,孙晗森,郑丽婧,徐春阳.2021.基于硅-焓混合模型的热储温度估算方法[J].天然气勘探与开发,44(3):112-117.
[16] 孙占学,高柏,张展适.2014.赣南地热气体起源的同位素与地球化学证据[J].地质科学,49(3):791-798.
[17] 孙占学,李学礼,史维浚.1992.江西中低温地热水的同位素水文地球化学[J].华东地质学院学报,(3):243-248.
[18] 孙占学,吴红梅.1999.地热系统中矿物—流体化学平衡的判断及热储温度的估算[J].地球学报,(增刊):605-608.
[19] 汪集旸,熊亮萍,庞忠和.1990.利用地热资料确定地下热水循环深度[J].科学通报,35(5):378-380.
[20] 汪啸.2018.广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征[D].中国地质大学硕士学位论文.
[21] 王进,肖则佑,侯怀敏.2020.赣南断褶山地对流型地热系统特征及成因——以石城县楂山里地热系统为例[J].华东地质,41(4):381-386.
[22] 熊盛青,杨海,丁燕云,李占奎.2016.中国陆域居里等温面深度特征[J].地球物理学报,59(10):3604-3617.
[23] 徐文炘,周亚敏,肖孟华.1991.初论碳酸盐岩地区利用碳,氧同位素地球化学找矿的可能性[J].矿产与地质,5(6):464-469.
[24] 叶海龙,樊柄宏,白细民,陈强,陈锡岳,冯子晋,曹进.2023.石城地热带水文地球化学特征与成因分析[J].地质学报,97(1):238-249.
[25] 张梦昭,郭清海,刘明亮,刘强.2023.山西忻州盆地地热水地球化学特征及其成因机制[J].地球科学,48(3):973-987.
[26] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.2010.GB/T 11615—2010 地热资源地质勘查规范[S].
[27] 邹国瑶,杨倩.2019.江西省石城县上温寮地热水成因分析[J].资源信息与工程,34(5):28-30.
[28] 邹咸华,李松林,刘孝萍.2019.江西省石城县珠坑乡九石蔡地热水勘查报告[R].江西省地质矿产勘查开发局水文地质工程地质大队.
[29] Ellis A, Mahon W. 1964. Natural hydrothermal systems and experimental hot-water/rock interactions[J]. Geochimica et Cosmochimica Acta, 28(8): 1323-1357.
[30] Fouillac C, Michard G. 1981. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs[J]. Geothermics, 10(1): 55-70.
[31] Fournier R O. 1979. A Revised Equation for the Na/K Geothermometer[J]. Transactions of the Geothermal Resources Council, 3: 221-224.
[32] Fournier R. 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1-4): 41-50.
[33] Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088-1090.
[34] Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12): 2749-2765.
[35] Li J L, Gao B, Dong Y H, Chen G X, Sun Z X. 2017. Sources of geothermal water in Jiangxi Province, SE-China: Evidences from hydrochemistry and isotopic composition[J]. Procedia Earth and Planetary Science, 17: 837-840.
[36] Li Y, Tian J, Cheng Y, Jiang G, Zhang Y, Chen K, Pang Z. 2021. Existence of high temperature geothermal resources in the igneous rock regions of South China[J]. Frontiers in Earth Science, 9: 728162.
[37] Liu R, Li H M, Zhao Z, Zhang Z Y. 2023. Analysis of geothermal fluid chemical characteristics and genetic model—A case study from the urban area of Jingmen, China[J]. Frontiers in Earth Science, 10: 1081781.
[38] Liu S S, Tang X C, Han X M, Zhang D L, Wang G L. 2023. Hydrochemistry of the Geothermal in Gonghe Basin, Northeastern Tibetan Plateau: Implications for Hydro-Circulation and the Geothermal System[J]. Water, 15(11): 1971.
[39] Reed M, Spycher N. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 48(7): 1479-1492.
[40] Rybach L, Muffler L J P. 1981. Geothermal systems: Principles and case histories[M]. New York:Wiley.
[41] Sheppard D. 1986. Fluid chemistry of the Waimangu geothermal system[J]. Geothermics, 15(3): 309-328.
[42] Sonney R, Mountain B. 2013. Experimental simulation of greywacke-fluid interaction under geothermal conditions[J]. Geothermics, 47: 27-39.
[43] Srinivasamoorthy K, Vasanthavigar M, Chidambaram S, Anandhan P, Manivannan R, Rajivgandhi R. 2012. Hydrochemistry of groundwater from Sarabanga minor basin, Tamilnadu, India[J]. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(3): 193.
[44] Steiner A. 1970. Genesis of hydrothermal K-feldspar (adularia) in an active geothermal environment at Wairakei, New Zealand[J]. Mineralogical Magazine, 37(292): 916-922.
[45] Verma S P, Santoyo E. 1997. New improved equations for NaK, NaLi and SiO2 geothermometers by outlier detection and rejection[J]. Journal of Volcanology and Geothermal Research, 79(1-2): 9-23.
[46] Wickman F E, Richard D. 1981. Chemistry and geochemistry of solutions at high temperatures and pressures: An introduction to the symposium[J]. Physics and Chemistry of the Earth, 13: 1-8.
[47] Yan J H, Zeng Z F, Zhou S, Ming Y Y, Ren Z W, Wang L X, An B Z, Tan H D, Zhao J W. 2024. Study on the resistivity structure and geothermal genesis mechanism of Gudui geothermal field in Tibet, China[J]. Geothermics, 119: 102929.
-
计量
- 文章访问数: 33
- PDF下载数: 7
- 施引文献: 0