大口径单井注抽试验求参过程中井底流和混溶效应的综合影响

文章, 朱棋. 2024. 大口径单井注抽试验求参过程中井底流和混溶效应的综合影响. 华南地质, 40(3): 435-444. doi: 10.3969/j.issn.2097-0013.2024.03.001
引用本文: 文章, 朱棋. 2024. 大口径单井注抽试验求参过程中井底流和混溶效应的综合影响. 华南地质, 40(3): 435-444. doi: 10.3969/j.issn.2097-0013.2024.03.001
WEN Zhang, ZHU Qi. 2024. Combined Effects of Bottom Flow and Wellbore Mixing on the Single-well Push-pull Test Using Large-diameter Well. South China Geology, 40(3): 435-444. doi: 10.3969/j.issn.2097-0013.2024.03.001
Citation: WEN Zhang, ZHU Qi. 2024. Combined Effects of Bottom Flow and Wellbore Mixing on the Single-well Push-pull Test Using Large-diameter Well. South China Geology, 40(3): 435-444. doi: 10.3969/j.issn.2097-0013.2024.03.001

大口径单井注抽试验求参过程中井底流和混溶效应的综合影响

  • 基金项目: 国家自然科学基金优秀青年基金项目(No.42022018),湖北省重点研发计划项目(No.2022BCA073)
详细信息
    作者简介: 文章(1982—),男,教授,主要从事地下水动力学及溶质反应迁移研究,E-mail: wenz@cug.edu.cn,ORCID:0000-0001-9672-3219
  • 中图分类号: P641.2

Combined Effects of Bottom Flow and Wellbore Mixing on the Single-well Push-pull Test Using Large-diameter Well

  • 单井注抽(single-well push-pull,SWPP)试验因其成本低、周期短以及操作简单的优点,被广泛用于求取含水层弥散度等水文地质参数。依托干旱半干旱区常用的大口径井开展SWPP试验,常面临井底流渗漏和井筒混溶效应共同的影响。为此,本研究构建了同时考虑井底流和混溶效应的SWPP试验三阶段溶质运移模型,利用有限差分法对模型进行求解,并利用前人的渗流和溶质运移模型解析解验证其准确性,随后依托该模型探究大口径井附近渗流特征及井尺寸对SWPP试验的影响机制。研究结果表明:(1)新提出的考虑井底流的SWPP试验模型对抽水过程降深以及井壁处溶质运移过程的刻画,同前人解析解匹配良好,表明了该模型构建及求解的准确性;(2)随着井筛长度的逐渐减小,井底流对含水层整体流场的影响程度逐渐增大,流场从径向逐渐转变为球形流场;(3)粗井径相比细井径,注入阶段井中的溶质BTC(Breakthrough curve,穿透曲线)值更小,但抽出阶段的溶质BTC更大,井中混溶过程相比井底渗漏过程对SWPP试验的影响更为显著;(4)当井深小到井径的一半左右时产生类球形流场,井底的渗漏过程相比混溶过程对SWPP试验可能存在更为显著的影响;(5)对于本研究设置的模拟场景,即使不存在井底流,前人的解析解由于忽略井筒混溶,对弥散度的解译仍存在152.5%的误差,而随着井底埋深逐渐减小,井底流导致前人解析解的误差也逐渐增大。

  • 加载中
  • 图 1  大口径井SWPP试验示意图

    Figure 1. 

    图 2  本研究的流场数值解(a)、溶质运移数值解(b)同前人的解析解验证对比图

    Figure 2. 

    图 3  不同井筛长度下大口径井附近地下水流场等水头线及流线示意图

    Figure 3. 

    图 4  不同抽注水速率(Q)、不同井径(rw)(a)和不同井底埋深(l)(b)情形下SWPP试验各阶段的溶质BTC曲线

    Figure 4. 

    表 1  不同井底埋深下解析解求出的弥散度及其误差

    Table 1.  The dispersivity coefficient and its error calculated from the previous analytical solutions under different well bottom burial depth conditions

    井底埋深(l)(m)12345678910
    α’L (m)7.36.966.776.536.285.985.745.555.315.05
    反演误差(%)265.0248.0238.5226.5214.0199.0187.0177.5165.5152.5
    下载: 导出CSV
  • [1]

    顾昊琛,凡倩莹.2023.混合效应和表皮效应对单井注抽试验的影响机理[J]. 安全与环境工程,30(2):156-162.

    [2]

    江思珉,周念清,施小清,郑茂辉.2010.利用大口径井抽水初期试验数据确定含水层参数[J]. 工程勘察,38(9):32-35.

    [3]

    李旭. 2020. 抽/注水井附近非均质介质中溶质运移机理及数值模拟研究[D]. 中国地质大学博士学位论文.

    [4]

    李 旭,苏世林,文 章,许光泉.2022.单井注抽试验测算地下水流速的数值分析[J]. 地球科学,47(2):633-641. doi: 10.3321/j.issn.1000-2383.2022.2.dqkx202202019

    [5]

    刘玉舒,戴炆君,刘 洋,王全荣.2020.考虑弱透水层的单井注抽试验解析模型研究[J]. 安全与环境工程,27(6):1-6.

    [6]

    苏世林,李 旭,郭 强,张海涛,许光泉,朱 棋.2024.非完整井对单井注抽试验测算地下水流速影响机理[J]. 地球科学,49(1):288-298.

    [7]

    文 章,黄冠华,李 健,詹红兵.2009.承压含水层中大口径井附近非达西流的线性化近似解与数值解[J]. 水利学报,40(7):863-869. doi: 10.3321/j.issn:0559-9350.2009.07.014

    [8]

    肖 勋,施文光,王全荣.2020.井内混合效应与尺度效应对注入井附近溶质径向弥散过程的影响[J]. 地球科学,45(4):1439-1446.

    [9]

    薛禹群,吴吉春.1999.面临21世纪的中国地下水模拟问题[J]. 水文地质工程地质,(5):1-3.

    [10]

    阳 畅,刘 洋,刘世强,陈 思,王全荣.2023.微生物堵塞对单井注抽试验的影响机理[J]. 安全与环境工程,30(1):199-204+220.

    [11]

    Barua G, Bora S N. 2010. Hydraulics of a partially penetrating well with skin zone in a confined aquifer[J]. Advances in Water Resources, 33(12): 1575-1587. doi: 10.1016/j.advwatres.2010.09.008

    [12]

    Barua G, Hoffmann M R. 2005. Theory of Seepage into an Auger Hole in a Confined Aquifer[J]. Journal of Irrigation and Drainage Engineering, 131(5): 440-450. doi: 10.1061/(ASCE)0733-9437(2005)131:5(440)

    [13]

    Chen Y, Wang Q R. 2021. The Effect of Boundary Conditions on the Single-Well Push-Pull Test in a Partially Penetrated Well[J]. Journal of Hydrology, 603(1): 127035.

    [14]

    Gupta C P, Singh V S. 1988. Flow regime associated with partially penetrating large-diameter wells in hard rocks[J]. Journal of Hydrology, 103(3-4): 209-217. doi: 10.1016/0022-1694(88)90134-5

    [15]

    Hebig K H, Zeilfelder S, Ito N, Machida I, Marui A, Scheytt T J. 2015. Study of the effects of the chaser in push-pull tracer tests by using temporal moment analysis[J]. Geothermics, 54: 43-53. doi: 10.1016/j.geothermics.2014.11.004

    [16]

    Huang J Q, Christ J A, Goltz M N. 2010. Analytical solutions for efficient interpretation of single‐well push‐pull tracer tests[J]. Water Resources Research, 46(8): W08538.1-W08538.16.

    [17]

    Lin J J, Ma R, Sun Z Y, Tang L S. 2023. Assessing the connectivity of a regional fractured aquifer based on a hydraulic conductivity field reversed by multi-Well pumping tests and numerical groundwater flow modeling[J]. Journal of Earth Science, 34(6): 1926-1939. doi: 10.1007/s12583-022-1674-5

    [18]

    Mathias S A, Butler A P, Zhan H B. 2008. Approximate solutions for Forchheimer flow to a well[J]. Journal of Hydraulic Engineering, 134(9): 1318-1325. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1318)

    [19]

    Meng X M, Shao J Y, Yin M S, Liu D F, Xue X W. 2015. Low velocity non-Darcian flow to a well fully penetrating a confined aquifer in the first kind of leaky aquifer system[J]. Journal of Hydrology, 530: 533-553. doi: 10.1016/j.jhydrol.2015.10.020

    [20]

    Papadopulos I S, Cooper Jr H H. 1967. Drawdown in a well of Large Diameter[J]. Water Resources Research, 3(1): 241-244. doi: 10.1029/WR003i001p00241

    [21]

    Schroth M H, Istok J D. 2005. Approximate solution for solute transport during spherical-flow push-pull tests[J]. Ground Water, 43(2): 280-284. doi: 10.1111/j.1745-6584.2005.0002.x

    [22]

    Shampine L F, Reichelt M W. 1997. The MATLAB ODE Suite[J]. ACM Transactions on Mathematical Software, 18(1): 1-22.

    [23]

    Shampine L F, Reichelt M W, Kierzenka J A. 1999. Solving Index-1 DAEs in MATLAB and Simulink[J]. SIAM Review, 41(3): 538-552. doi: 10.1137/S003614459933425X

    [24]

    Shi W G, Wang Q R, Zhan H B. 2020. New Simplified Models of Single-Well Push-Pull Tests With Mixing Effect[J]. Water Resources Research, 56(8): e2019WR026802. doi: 10.1029/2019WR026802

    [25]

    Shi W G, Wang Q R, Salihu Danlami M. 2022. A novel analytical model of solute transport in a layered aquifer system with mixing processes in the reservoirs[J]. Environmental Science and Pollution Research, 29(45): 67953-67968. doi: 10.1007/s11356-022-20495-5

    [26]

    Shi W G, Wang Q R, Zhan H B, Zhou R J, Yan H T. 2023. A general model of radial dispersion with wellbore mixing and skin effects[J]. Hydrology and Earth System Science, 27(9): 1891-1908. doi: 10.5194/hess-27-1891-2023

    [27]

    Singh S K. 2007. Semianalytical model for drawdown due to pumping a partially penetrating large diameter well[J]. Journal of Irrigation and Drainage Engineering, 133(2): 155-161. doi: 10.1061/(ASCE)0733-9437(2007)133:2(155)

    [28]

    Wang Q R, Jin A H, Zhan H B, Chen Y, Shi W G, Liu H, Wang Y. 2021. Revisiting simplified model of a single-well push-pull test for estimating regional flow velocity[J]. Journal of Hydrology, 601: 126711. doi: 10.1016/j.jhydrol.2021.126711

    [29]

    Wen Z, Huang G H, Zhan H B. 2009. A numerical solution for non-Darcian flow to a well in a confined aquifer using the power law function[J]. Journal of Hydrology, 364(1): 99-106.

    [30]

    Wang Q R, Shi W G, Zhan H B, Gu H C, Chen K W. 2018. Models of Single-Well Push-Pull Test With Mixing Effect in the Wellbore[J]. Water Resources Research, 54(12): 10155-10171.

    [31]

    Wang Q R, Wang J X, Zhan H B, Shi W G. 2020. New model of reactive transport in a single-well push–pull test with aquitard effect and wellbore storage[J]. Hydrology and Earth System Science, 24(8): 3983-4000. doi: 10.5194/hess-24-3983-2020

    [32]

    Wang Q R, Zhan H B, Wang Y X. 2017. Single-well push-pull test in transient Forchheimer flow field[J]. Journal of Hydrology, 549: 125-132. doi: 10.1016/j.jhydrol.2017.03.066

    [33]

    Zhu Q, Wen Z, Jakada H. 2020. A new solution to transient single-well push-pull test with low-permeability non-Darcian leakage effects[J]. Journal of Contaminant Hydrology, 234: 103689. doi: 10.1016/j.jconhyd.2020.103689

  • 加载中

(4)

(1)

计量
  • 文章访问数:  88
  • PDF下载数:  52
  • 施引文献:  0
出版历程
收稿日期:  2024-07-08
修回日期:  2024-08-19
刊出日期:  2024-09-25

目录