攀西地区二叠纪碱性岩成因及其铌钽成矿作用研究进展

吴镇宇, 刘琰. 2024. 攀西地区二叠纪碱性岩成因及其铌钽成矿作用研究进展. 华南地质, 40(3): 445-461. doi: 10.3969/j.issn.2097-0013.2024.03.002
引用本文: 吴镇宇, 刘琰. 2024. 攀西地区二叠纪碱性岩成因及其铌钽成矿作用研究进展. 华南地质, 40(3): 445-461. doi: 10.3969/j.issn.2097-0013.2024.03.002
WU Zhen-Yu, LIU Yan. 2024. Research Progress on Petrogenesis and Niobium-Tantalum Mineralization of Permian Alkaline Rocks in the Panxi Region. South China Geology, 40(3): 445-461. doi: 10.3969/j.issn.2097-0013.2024.03.002
Citation: WU Zhen-Yu, LIU Yan. 2024. Research Progress on Petrogenesis and Niobium-Tantalum Mineralization of Permian Alkaline Rocks in the Panxi Region. South China Geology, 40(3): 445-461. doi: 10.3969/j.issn.2097-0013.2024.03.002

攀西地区二叠纪碱性岩成因及其铌钽成矿作用研究进展

  • 基金项目: 中国地质调查局地质调查项目(DD20221649)
详细信息
    作者简介: 吴镇宇(1998—),男,硕士研究生,矿物学、岩石学、矿床学专业,E-mail: 2363822150@qq.com
    通讯作者: 刘琰(1982—),男,研究员,博士生导师,从事碳酸岩及稀土的成因矿物学和矿床形成机制研究,E-mail: ly_0620@126.com
  • 中图分类号: P581;P611.1

Research Progress on Petrogenesis and Niobium-Tantalum Mineralization of Permian Alkaline Rocks in the Panxi Region

More Information
  • 铌(Nb)、钽(Ta)元素是重要的战略性关键金属资源,碱性岩因富集铌钽等稀有、稀土元素而备受学者们关注。近年来,峨眉山大火成岩省内部带攀西地区发育的一系列二叠纪过碱性-准铝质-过铝质正长岩和花岗岩及其相关铌钽矿床在成岩成矿时代、地球化学特征、岩石成因及铌钽富集机制等方面取得了一些重要研究进展。主要认识有:在地幔柱轴部,地幔苦橄岩部分熔融形成峨眉山高钛玄武质岩浆,其在岩浆房中发生分离结晶和液态不混溶作用,形成小规模的A型花岗岩和碱性-准铝质正长岩。底侵的幔源岩浆对流为基性辉长岩部分熔融提供大量的热能,形成广泛分布的过碱性-准铝质正长岩和花岗岩。与此同时,少量新生地壳或扬子板块基底参与部分熔融过程则会形成过铝质花岗岩。研究表明,铌钽元素富集过程受岩浆结晶分异和热液交代两个演化阶段共同控制。源自地幔的碱性岩浆通过结晶分异作用优先结晶出斜长石、角闪石、磷灰石等矿物,导致Nb、Ta元素在正长岩体中得到初步富集。从岩体中出溶的富F-Na热液交代原岩,并发生钠长石化、霓石化、萤石化等蚀变作用。早期岩浆成因的铌钽矿物因交代而裂解,使Nb、Ta元素被重新活化、迁移、沉淀形成热液烧绿石和榍石。

  • 加载中
  • 图 1  攀西地区区域地质及铌钽矿床(点)分布地质图

    Figure 1. 

    图 2  攀西地区白草铌钽矿区地质简图

    Figure 2. 

    图 3  攀西白草和白马岩体正长岩稀土配分模式图与微量元素蛛网图

    Figure 3. 

    图 4  攀西地区白草和白马正长岩(87Sr/86Sr)i vs. εNd(t)图解

    Figure 4. 

    图 5  攀西地区同位素亏损与富集系列岩石的锆石δ18O vs. εHf(t)同位素组成图解

    Figure 5. 

    表 1  攀西地区主要铌钽矿床、矿点分布及矿化类型

    Table 1.  Major Nb-Ta deposits or points of distribution and mineralization types in the Panxi region

    矿床及
    矿点
    含矿岩层/岩脉 成矿元素 稀有金属矿物类型 蚀变作用 矿床
    成因类型
    成矿
    时期
    西昌
    乱石滩
    碱性伟晶
    正长岩脉
    Nb、Ta、Zr、Y、LREE、U、Th 烧绿石、铌铁矿、铌钙矿、榍石
    褐钇铌矿、褐帘石、独居石、锆石
    钠长石化、萤石化
    霓石化
    碱性
    伟晶岩型
    印支期
    西昌
    长村
    碱性伟晶
    正长岩脉
    Nb、Ta、Zr、Y、LREE、U、Th 烧绿石、铌铁矿、榍石、褐钇铌矿
    褐帘石、独居石、锆石
    钠长石化、萤石化
    霓石化
    碱性
    伟晶岩型
    印支期
    西昌
    莲花山
    英碱正长岩脉 Nb、Ta、Y、
    LREE、Zr
    褐钇铌矿、褐帘石、铌铁矿、
    独居石、锆石
    钠长石化、霓石化 碱性
    岩型
    印支期
    西昌
    谢家坟
    霓石石英
    正长岩
    Nb、Ta、Y、LREE 烧绿石、褐钇铌矿、铌铁金红石 钠长石化、霓石化 碱性
    岩型
    燕山期
    西昌
    高草
    正长岩与角岩
    接触带
    Nb、Ta、Y、LREE 烧绿石、褐钇铌矿、铌铁金红石 角岩化、硅化
    磁铁矿化
    碱性
    岩型
    印支期
    德昌
    茨达
    钠铁闪石花岗岩
    霓石正长岩
    Nb、Ta、Zr、Y、LREE、U、Hf 铌钽铁矿、褐钇铌矿、烧绿石
    含铌金红石、锆英石
    钠长石化、霓石化
    钠铁闪石化
    花岗岩型 印支期
    米易
    黄草
    碱性伟晶岩脉
    正长岩脉
    Nb、Ta、Zr、Y、LREE、U、Th 烧绿石、铌铁矿、铌钙矿、榍石
    褐钇铌矿、褐帘石
    钠长石化、萤石化
    霓石化
    碱性
    伟晶岩型
    印支期
    米易
    黄土坡
    碱性伟晶岩 Nb、Ta、Zr、Y、LREE、U、Th 烧绿石、铌铁矿、铌钙矿、榍石
    褐钇铌矿、褐帘石
    钠长石化、萤石化
    霓石化
    碱性
    伟晶岩型
    印支期
    米易
    草场
    碱性花岗岩
    正长岩脉
    Nb、Ta、Y、
    LREE、Zr
    褐钇铌矿、褐帘石、铌铁矿
    独居石、锆石
    黑云母化
    褐帘石化
    花岗岩型 印支期
    攀枝花
    白草
    碱性伟晶岩脉
    碱性正长岩
    Nb、Ta、Zr、Y、TREE、U、Th 烧绿石、铌铁矿、铌钙矿、
    榍石、独居石褐钇铌矿、
    硅钛铈铁矿、褐帘石、锆石
    钠长石化、萤石化
    霓石化、碳酸盐化
    碱性
    伟晶岩型
    印支期
    攀枝花
    炉库
    碱性伟晶岩脉
    碱性正长岩
    Nb、Ta、Zr、Y、TREE、U、Th 烧绿石、铌铁矿、星叶石、
    铌钙矿、榍石、褐钇铌矿、
    褐帘石、硅钛铈铁矿、独居石、锆石
    钠长石化、萤石化
    霓石化、碳酸盐化
    碱性
    伟晶岩型
    印支期
    会东
    干沟
    会理群酸性
    火山岩
    Nb、Ta、Zr、Y、LREE、U、Th 铌钽铁矿、硅铈铌钡矿、烧绿石
    独居石、氟碳钙铈矿
    钾化、绢云母化
    硅化、碳酸盐化
    火山岩型 晋宁期
    下载: 导出CSV

    表 2  攀西地区部分碱性正长岩和花岗岩岩石年龄统计

    Table 2.  Age data of major alkaline syenite or granite rocks in the Panxi region

    地 点/矿床样品号岩 性测试方法年龄(Ma)参考文献
    太和TH-14A型花岗岩锆石SHRIMP261.4 ± 2.3Xu Y G et al., 2008
    茨达CD-0401花岗岩锆石 SHRIMP261 ± 4Zhong H et al., 2007
    GS04-143花岗岩锆石CA–TIMS258.4 ± 0.6Shellnutt et al., 2012
    矮郎河HG-1过铝质花岗岩锆石SHRIMP255.2 ± 3.6Xu Y G et al., 2008
    ALH-0401花岗岩锆石SHRIMP251 ± 6Zhong H et al., 2007
    ALH-0401I型花岗岩锆石LA-ICP-MS256.8 ± 2.8Zhong H et al., 2011
    ALH-0702I型花岗岩锆石LA-ICP-MS256.2 ± 3.0Zhong H et al., 2011
    窝水GS05-067花岗岩锆石SHRIMP260.5 ± 2.3Shellnutt and Zhou M F, 2007
    GS05-067正长岩锆石CA–TIMS259.6 ± 0.5Shellnutt et al., 2012
    攀枝花WB-0604正长岩锆石SHRIMP253.1 ± 1.9Zhong H et al., 2009
    WB-0604正长岩锆石LA-ICP-MS255.8 ± 1.8Zhong H et al., 2011
    EM-PZH11正长岩黑云母40Ar/39Ar251.6 ± 1.6Lo et al., 2002
    EM-PZH01正长岩黑云母40Ar/39Ar254.6 ± 1.3Lo et al., 2002
    白马GS03-122铁橄榄石正长岩锆石SHRIMP252 ± 2.5Shellnutt and Zhou M F, 2008
    G0S3-092正长岩锆石SHRIMP259 ± 5Shellnutt et al., 2009
    GS04-016正长岩锆石SHRIMP258 ± 4Shellnutt et al., 2009
    MY-6正长岩锆石SHRIMP262 ± 2Zhou M F et al., 2008
    CD-0401花岗岩锆石LA-ICP-MS256.2 ± 1.5Zhong H et al., 2011
    TJ-0401正长岩锆石LA-ICP-MS257.8 ± 2.6Zhong H et al., 2011
    TJ-0602正长岩锆石LA-ICP-MS258.5 ± 2.3Zhong H et al., 2011
    BM-1-9铁质正长岩锆石 LA-ICP-MS259 ± 1.0Zhang Z Z et al., 2021
    BM-2-9铁质正长岩锆石 LA-ICP-MS258.9 ± 1.0Zhang Z Z et al., 2021
    BM-3-5花岗岩锆石 LA-ICP-MS258.7 ± 1.0Zhang Z Z et al., 2021
    黄草HC-2辉石正长岩锆石SHRIMP266.5 ± 5.1Xu Y G et al., 2008
    GS05-059铁橄榄石正长岩锆石CA–TIMS258.9 ± 0.7Shellnutt et al., 2012
    猫猫沟LQ-3霞石正长岩锆石SHRIMP261.6 ± 4.4Luo Z Y et al., 2007
    EM-MMG05正长岩黑云母 40Ar/39Ar252.0 ± 1.3Lo et al., 2002
    白草BC2003铌钽矿化正长岩锆石 LA-ICP-MS257 ± 0.8Zeng Z Y and Liu Y, 2022
    BC-3铌钽矿化正长岩锆石 LA-ICP-MS257.8 ± 1.3王汾连, 2014
    BC2004正长岩榍石 LA-ICP-MS256.7 ± 3.3李素欣等, 2023
    炉库LK12-15铌钽矿化正长岩锆石 LA-ICP-MS256.7 ± 4.4王汾连, 2014
    红格HGZ-1-12正长岩锆石 SHRIMP257.2 ± 1.5李华芹等, 2017
    大黑山DHS-1正长岩锆石CA–TIMS259.1 ± 0.5Shellnutt et al., 2012
    米易MY-5石英正长岩锆石SHRIMP259.8 ± 3.5Xu Y G et al., 2008
    季家湾JJW正长岩锆石 LA-ICP-MS259.8 ± 1.7Zhang Z Z et al., 2019
    横山HS石英正长岩锆石LA-ICP-MS260.1 ± 1.4Zhang Z Z et al., 2019
    猴子山HZS2角闪正长岩锆石 LA-ICP-MS260.2 ± 1.8Zhang Z Z et al., 2020
    下载: 导出CSV

    表 3  攀西地区主要正长岩和花岗岩同位素特征

    Table 3.  Isotopes geochemical data of major syenites and granites in the Panxi region

    地点/矿床岩性(含矿性)(86Sr/87Sr) iεNd(t)锆石εHf(t)锆石δ18O(‰)δ11B(‰)文献来源
    茨达花岗岩0.7023 ~ 0.7053−0.25 ~ 0.24Zhong H et al., 2007
    矮郎河花岗岩0.7102 ~ 0.7111−6.34 ~ −6.26
    攀枝花正长岩0.7037 ~ 0.70582.37 ~ 3.45Zhong H et al., 2009
    正长岩0.7045 ~ 0.70471.74 ~ 2.79Lu P F and Liu P P, 2023
    白马正长岩0.7039 ~ 0.7089−5.9 ~ 3.7Zhou M F et al., 2008
    正长岩0.7045 ~ 0.70632.24 ~ 2.965.7 ~ 11.04.1 ~ 4.9Lu P F and Liu P P, 2023
    花岗岩0.7052 ~ 0.7097−4.56 ~ −2.09−4.0 ~ 1.74.8 ~ 7.4
    正长岩5.47 ~ 6.51Zeng Z Y and Liu Y et al., 2022
    红格正长岩0.7054 ~ 0.70580.14 ~ 0.923.6 ~ 8.64.6 ~ 5.4Lu P F and Liu P P, 2023
    白草正长岩0.7055 ~ 0.7090−0.3 ~ 0.40.3 ~ 6.2−10.96 ~ −10.01王汾连, 2014
    正长岩(无矿)0.7044 ~ 0.7054−0.2 ~ 0.7−13.45 ~ −11.96
    正长岩(含矿)0.7049 ~ 0.7076−0.2 ~ 0.0−0.2 ~ 7.7−17.95 ~ −14.54
    正长岩5.67 ~ 6.41 (岩浆锆石)
    2.24 ~ 5.93 (热液锆石)
    Zeng Z Y and Liu Y et al., 2022
    炉库正长岩体0.7032 ~ 0.7051−0.2 ~ 0.31 ~ 6.6−12.45 ~ −11.82王汾连, 2014
    正长岩(无矿)0.7063 ~ 0.7064−0.3 ~ −0.11.7 ~ 7.7
    正长岩(含矿)0.7055 ~ 0.7091−0.1 ~ 0.20.1 ~ 9.5−16.40 ~ −15.79
    正长岩5.37 ~ 6.35Zeng Z Y and Liu Y et al., 2022
    米易猴子山角闪正长岩0.7049 ~ 0.70502.4 ~ 2.58.9 ~ 11.0张泽中, 2019
    米易纪家湾正长岩0.7045 ~ 0.70462.0 ~ 2.26.0 ~ 10.3
    米易横山石英正长岩0.7100 ~ 0.7103−5.2 ~ −3.9−5.4 ~ 1.3
    下载: 导出CSV
  • [1]

    陈 唯,应元灿,柳加俊,杨 帆,蒋少涌.2024.与碳酸岩-碱性岩有关的铌-稀土矿床成矿作用及成因机制[J]. 矿物岩石地球化学通报,43(1):1-14.

    [2]

    何海洋,何 敏,李建武.2018.我国铌矿资源供需形势分析[J]. 中国矿业,27(11):1-5.

    [3]

    贺金良.2004.四川攀西地区铌钽矿床成矿地质条件及找矿前景[J]. 四川地质学报,24(4):206-211.

    [4]

    胡瑞忠,陶 琰,钟 宏,黄智龙,张正伟.2005.地幔柱成矿系统:以峨眉山地幔柱为例[J]. 地学前缘,12(1):42-54.

    [5]

    季 浩,李艳军,李一鸣,冷双梁,杨紫文.2024.碱性花岗岩型稀有稀土矿床类型及成矿作用研究进展[J]. 地质科技通报,43(1):23-38.

    [6]

    蒋少涌.2000.硼同位素及其地质应用研究[J]. 高校地质学报,6(1):1-16.

    [7]

    李华芹,王登红,张利国,任海涛,王晓地,贾小辉,杨文强.2017.四川攀西红格矿区辉长岩和正长岩的SHRIMP U-Pb和Sm-Nd定年及其地质意义[J]. 地质通报,36(5):698-705.

    [8]

    李建康,李 鹏,王登红,李兴杰.2019.中国铌钽矿成矿规律[J]. 科学通报,64(15):1545-1566.

    [9]

    李素欣,钟 宏,柏中杰,朱维光.2023.攀西碱性岩型Nb-Zr-REE矿床的矿物学与地球化学研究[J]. 矿物学报,43(5):627-639.

    [10]

    李献华,李武显,王选策,李秋立,刘 宇,唐国强.2009.幔源岩浆在南岭燕山早期花岗岩形成中的作用:锆石原位Hf-O同位素制约[J]. 中国科学(D辑:地球科学),39(7):872-887.

    [11]

    刘肇昌. 1996. 扬子地台西缘构造演化与成矿[M]. 成都:电子科技大学出版社.

    [12]

    罗震宇,徐义刚,何 斌,石玉若,黄小龙.2006.论攀西猫猫沟霞石正长岩与峨眉山大火成岩省的成因联系:年代学和岩石地球化学证据[J]. 科学通报,51(15):1802-1810.

    [13]

    秦江锋,赖绍聪,张泽中,郑国顺.2021.峨眉山大火成岩省内带中酸性岩浆岩对地幔柱岩浆过程及地壳熔融机制的启示[J]. 西北大学学报(自然科学版),51(6):1031-1041.

    [14]

    四川省地质矿产局. 1991. 四川省区域地质志[M]. 北京:地质出版社.

    [15]

    苏 立. 2018. 白云鄂博西矿铌富集机制及成矿相关性研究 [D]. 中国矿业大学(北京)博士学位论文.

    [16]

    陶 琰,李玉帮,廖名扬,熊 风.2014.四川攀西炉库铌钽矿床成因分析[J]. 矿床地质,33(S1):1189-1190.

    [17]

    王汾连. 2014. 攀西地区二叠纪铌钽矿的成因研究:以炉库和白草矿区为例 [D]. 中国科学院大学博士学位论文.

    [18]

    王汾连,赵太平,陈 伟,王 焰.2013.峨眉山大火成岩省赋Nb-Ta-Zr矿化正长岩脉的形成时代和锆石Hf同位素组成[J]. 岩石学报,29(10):3519-3532.

    [19]

    王汾连,赵太平,陈 伟.2012.铌钽矿研究进展和攀西地区铌钽矿成因初探[J]. 矿床地质,31(2):293-308.

    [20]

    王汝成,车旭东,邬 斌,谢 磊.2020.中国铌钽锆铪资源[J]. 科学通报,65(33):3763-3777.

    [21]

    王 焰,王 坤,邢长明,魏 博,董 欢,曹永华.2017.二叠纪峨眉山地幔柱岩浆成矿作用的多样性[J]. 矿物岩石地球化学通报,36(3):404-417.

    [22]

    吴鸣谦. 2017. 江西宜春(四一四)和大吉山矿床的矿物学、地球化学及成矿作用研究 [D]. 中国地质大学(北京)博士学位论文.

    [23]

    吴镇宇. 2024. 攀西地区二叠纪碱性正长岩成因机制及铌钽成矿 [D]. 中国地质科学院硕士学位论文.

    [24]

    徐义刚,何 斌,罗震宇,刘海泉.2013.我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报,32(1):25-39.

    [25]

    徐义刚,钟玉婷,位 荀,陈 军,刘海泉,颉 炜,罗震宇,李洪颜,何 斌,黄小龙,王 焰,陈 赟.2017.二叠纪地幔柱与地表系统演变[J]. 矿物岩石地球化学通报,36(3):359-373+358.

    [26]

    杨 成,刘成新,刘万亮,万 俊,段先锋,张 众.2017.南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿[J]. 岩石矿物学杂志,36(5):605-618.

    [27]

    杨铸生,段惠敏,王秀京.2007.四川攀西地区铌钽矿床的地质特征及找矿方向[J]. 四川地质学报,27(4):248-254.

    [28]

    姚春彦,王天刚,倪 培,姚仲友,郭维民,朱意萍,王 威.2021.铌钽矿床类型、特征与研究进展[J]. 中国地质,48(6):1748-1758.

    [29]

    尹福光,孙志明,万 方. 2007. 扬子陆块西缘构造演化及其资源效应[M]. 北京:地质出版社.

    [30]

    张 东,杨武斌,牛贺才.2024.钠交代作用对碱性花岗岩体系中稀土富集成矿的贡献[J]. 岩石学报,40(3):864-872.

    [31]

    张云湘,袁学诚. 1988. 中国攀西裂谷文集3[M]. 北京:地质出版社.

    [32]

    张泽中. 2019. 攀西米易地区晚二叠世碱性岩成因机制及地质意义 [D]. 西北大学硕士学位论文.

    [33]

    张招崇,王福生,范蔚茗,邓海琳,徐义刚,许继峰,王岳军.2001.峨眉山玄武岩研究中的一些问题的讨论[J]. 岩石矿物学杂志,20(3):239-246.

    [34]

    朱煜翔. 2019. 东秦岭新元古代方城碱性杂岩体的成因及Nb-Ta富集机制 [D]. 中国地质大学(武汉)硕士学位论文.

    [35]

    自然资源部信息中心. 2023. 2022年全国矿产资源储量统计表[Z]. 中华人民共和国自然资源部.

    [36]

    Aseri A A, Linnen R L, Che X D, Thibault Y, Holtz F. 2015. Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts[J]. Ore Geology Reviews, 64: 736-746. doi: 10.1016/j.oregeorev.2014.02.014

    [37]

    Ballouard C, Massuyeau M, Elburg M A, Tappe S, Viljoen F, Brandenburg J T. 2020. The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralizations[J]. Earth-Science Reviews, 203: 103115. doi: 10.1016/j.earscirev.2020.103115

    [38]

    Charlier B, Grove T L. 2012. Experiments on liquid immiscibility along tholeiitic liquid lines of descent[J]. Contributions to Mineralogy and Petrology, 164(1): 27-44. doi: 10.1007/s00410-012-0723-y

    [39]

    Chen J F, Jahn B M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence[J]. Tectonophysics, 284(1-2): 101-133. doi: 10.1016/S0040-1951(97)00186-8

    [40]

    Fan W M, Zhang C H, Wang Y J, Guo F, Peng T P. 2008. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: Evidence for plume-lithosphere interaction[J]. Lithos, 102(1-2): 218-236. doi: 10.1016/j.lithos.2007.09.019

    [41]

    Giovannini A L, Bastos Neto A C, Porto C G, Pereira V P, Takehara L, Barbanson L, Bastos P H S. 2017. Mineralogy and geochemistry of laterites from the Morro dos Seis Lagos Nb (Ti, REE) deposit (Amazonas, Brazil)[J]. Ore Geology Reviews, 88: 461-480. doi: 10.1016/j.oregeorev.2017.05.008

    [42]

    Gulley A L, Nassar N T, Xun S. 2018. China, the United States, and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4111-4115.

    [43]

    Keays R R. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits[J]. Lithos, 34(1-3): 1-18. doi: 10.1016/0024-4937(95)90003-9

    [44]

    Linnen R, Trueman D L, Burt R. 2014. Tantalum and niobium. //In: Gunn G(Ed. ). Critical Metals Handbook[M]. Wiley: 361-384.

    [45]

    Lo C H, Chung S L, Lee T Y, Wu G Y. 2002. Age of the Emeishan flood magmatism and relations to Permian–Triassic boundary events[J]. Earth and Planetary Science Letters, 198(3-4): 449-458. doi: 10.1016/S0012-821X(02)00535-6

    [46]

    Lu P F, Liu P P. 2023. Constraints of combined Sr-Nd-Pb-Hf-O isotopic systematics on the petrogenesis of peralkaline, metaluminous and peraluminous granitoids in the Permian Emeishan large igneous province, SW China[J]. Chemical Geology, 624: 121423. doi: 10.1016/j.chemgeo.2023.121423

    [47]

    Luo Z Y, Xu Y G, He B, Shi Y R, Huang X L. 2007. Geochronologic and petrochemical evidence for the genetic link between the Maomaogou nepheline syenites and the Emeishan large igneous province[J]. Chinese Science Bulletin, 52(7): 949-958. doi: 10.1007/s11434-007-0112-5

    [48]

    Ma D Z, Liu Y. 2023. Nb mineralization in the nepheline syenite in the Saima area of the North China Craton, China[J]. Ore Geology Reviews, 152: 105247. doi: 10.1016/j.oregeorev.2022.105247

    [49]

    Mitchell R H. 2015. Primary and secondary niobium mineral deposits associated with carbonatites[J]. Ore Geology Reviews, 64: 626-641. doi: 10.1016/j.oregeorev.2014.03.010

    [50]

    Palme H, O’Neill H S C. 2014. Cosmochemical Estimates of Mantle Composition[J]. Treatise on Geochemistry, 3: 1-39.

    [51]

    Palmieri M, Brod J A, Cordeiro P, Gaspar J C, Barbosa P A R, de Assis L C, Junqueira-Brod T C, Silva S E E, Milanezi B P, Machado S A, Jácomo M H. 2022. The Carbonatite-Related Morro do Padre Niobium Deposit, Cataldo II Complex, Central Brazil[J]. Economic Geology, 117(7): 1497-1520. doi: 10.5382/econgeo.4951

    [52]

    Pang K N, Zhou M F, Lindsley D, Zhao D G, Malpas J. 2008. Origin of Fe-Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China[J]. Journal of Petrology, 49(2): 295-313.

    [53]

    Peccerillo A, Barberio M R, Yirgu G, Ayalew D, Barbieri M, Wu T W. 2003. Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: a Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift[J]. Journal of Petrology, 44(11): 2003-2032. doi: 10.1093/petrology/egg068

    [54]

    Rudnick R L, Gao S. 2014. 4.1-Composition of the Continental Crust. //Holland H D, Turekian K K (eds.). Treatise on Geochemistry(Second Edition)[M] :1-51. Oxford: Elsevier.

    [55]

    Shellnutt J G, Denyszyn S W, Mundil R. 2012. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China)[J]. Gondwana Research, 22(1): 118-126. doi: 10.1016/j.gr.2011.10.009

    [56]

    Shellnutt J G, Jahn B M, Zhou M F. 2011. Crustally-derived granites in the Panzhihua region, SW China: Implications for felsic magmatism in the Emeishan large igneous province[J]. Lithos, 123(1-4): 145-157. doi: 10.1016/j.lithos.2010.10.016

    [57]

    Shellnutt J G, Zhou M F, Yan D P, Wang Y B. 2008. Longevity of the Permian Emeishan mantle plume (SW China): 1 Ma, 8 Ma or 18 Ma?[J]. Geological Magazine, 145(3): 373-388. doi: 10.1017/S0016756808004524

    [58]

    Shellnutt J G, Zhou M F, Zellmer G F. 2009. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: An example from the Permian Baima igneous complex, SW China[J]. Chemical Geology, 259(3-3): 204-217.

    [59]

    Shellnutt J G, Zhou M F. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume[J]. Chemical Geology, 243(3-4): 286-316. doi: 10.1016/j.chemgeo.2007.05.022

    [60]

    Shellnutt J G, Zhou M F. 2008. Permian, rifting related fayalite syenite in the Panxi region, SW China[J]. Lithos, 101(1-2): 54-73. doi: 10.1016/j.lithos.2007.07.007

    [61]

    Shellnutt J G. 2014. The Emeishan large igneous province: A synthesis[J]. Geoscience Frontiers, 5(3): 369-394. doi: 10.1016/j.gsf.2013.07.003

    [62]

    Stepanov A, Mavrogenes J A, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum[J]. Contributions to Mineralogy and Petrology, 167(6): 1-8.

    [63]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42: 313 - 345.

    [64]

    Timofeev A, Williams-Jones A E. 2015. The Origin of Niobium and Tantalum Mineralization in the Nechalacho REE Deposit, NWT, Canada[J]. Economic Geology, 110(7): 1719-1735. doi: 10.2113/econgeo.110.7.1719

    [65]

    Valley J W. 2003. Oxygen Isotopes in Zircon[J]. Reviews in Mineralogy and Geochemistry, 53(1): 343-385. doi: 10.2113/0530343

    [66]

    Wang F L, Wang C Y, Zhao T P. 2015. Boron isotopic constraints on the Nb and Ta mineralization of the syenitic dikes in the ~260 Ma Emeishan large igneous province (SW China)[J]. Ore Geology Reviews, 65: 1110-1126. doi: 10.1016/j.oregeorev.2014.09.009

    [67]

    Wu B, Hu Y Q, Bonnetti C, Xu C, Wang R C, Zhang Z S, Li Z Y, Yin R. 2021. Hydrothermal alteration of pyrochlore group minerals from the Miaoya carbonatite complex, central China and its implications for Nb mineralization[J]. Ore Geology Reviews, 132: 104059. doi: 10.1016/j.oregeorev.2021.104059

    [68]

    Xiao L, Xu Y G, Mei H J, Zheng Y F, He B, Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: implications for plume-lithosphere interaction[J]. Earth and Planetary Science Letters, 228(3-4): 525-546. doi: 10.1016/j.jpgl.2004.10.002

    [69]

    Xu C, Kynicky J, Chakhmouradian A R, Campbell I H, Allen C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China[J]. Lithos, 118(1-2): 145-155. doi: 10.1016/j.lithos.2010.04.003

    [70]

    Xu G W, Zhu W G, Chen L, Zhong H, Wang Y J, Bai Z J, Yao J H, Hu P C. 2022. Ancient crust-derived syenitic and A-type granitic intrusions in the Emeishan large igneous province, SW China[J]. Lithos, 430-431: 106844.

    [71]

    Xu J, Xia X P, Wang Q, Spencer C J, He B, Lai C K. 2021. Low-δ18O A-type granites in SW China: Evidence for the interaction between the subducted Paleotethyan slab and the Emeishan mantle plume[J]. Bulletin of the Geological Society of America Bulletin, 134(1-2): 81-93.

    [72]

    Xu Y G, Luo Z Y, Huang X L, He B, Xiao L, Xie L W, Shi Y R. 2008. Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochimica et Cosmochimica Acta, 72(13): 3084-3104. doi: 10.1016/j.gca.2008.04.019

    [73]

    Ying Y C, Chen W, Chakhmouradian A R, Zhao K D, Jiang S Y. 2023. Textural and compositional evolution of niobium minerals in the Miaoya carbonatite-hosted REE-Nb deposit from the South Qinling Orogen of central China[J]. Mineralium Deposita, 58(1): 197-220. doi: 10.1007/s00126-022-01126-y

    [74]

    Ying Y C, Chen W, Simonetti A, Jiang S Y, Zhao K D. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China)[J]. Geochimica et Cosmochimica Acta, 280: 340-359. doi: 10.1016/j.gca.2020.04.028

    [75]

    Yong T, Linnen R L, McNeil A G. 2023. An Experimental Study of Pyrochlore Solubility in Peralkaline Granitic Melts[J]. Economic Geology, 118(1): 209-223. doi: 10.5382/econgeo.4958

    [76]

    Zeng Z Y, Liu Y. 2022. Magmatic-hydrothermal zircons in syenite: A record of Nb-Ta mineralization processes in the Emeishan large igneous province, SW China[J]. Chemical Geology, 589: 120675. doi: 10.1016/j.chemgeo.2021.120675

    [77]

    Zhang Z Z, Qin J F, Lai S C, Long X P, Ju Y J, Wang X Y, Zhu Y, Zhang F Y. 2019. Origin of Late Permian syenite and gabbro from the Panxi rift, SW China: The fractionation process of mafic magma in the inner zone of the Emeishan mantle plume[J]. Lithos, 346: 105160.

    [78]

    Zhang Z Z, Qin J F, Lai S C, Long X P, Ju Y J, Wang X Y, Zhu Y, Zhang F Y. 2021. High-temperature melting of different crustal levels in the inner zone of the Emeishan large igneous province: Constraints from the Permian ferrosyenite and granite from the Panxi region[J]. Lithos, 402-403: 105979. doi: 10.1016/j.lithos.2021.105979

    [79]

    Zhang Z Z, Qin J F, Lai S C, Long X P, Ju Y J, Wang X Y, Zhu Y. 2020. Origin of Late Permian amphibole syenite from the Panxi area, SW China: high degree fractional crystallization of basaltic magma in the inner zone of the Emeishan mantle plume[J]. International Geology Review, 62(2): 210-224. doi: 10.1080/00206814.2019.1596844

    [80]

    Zhang Z C, Zhi X C, Chen L, Saunders A D, Reichow M K. 2008. Re-Os isotopic compositions of picrites from the Emeishan flood basalt province, China[J]. Earth and Planetary Science Letters, 276(1-2): 30-39. doi: 10.1016/j.jpgl.2008.09.005

    [81]

    Zhong H, Campbell I H, Zhu W G, Allen C M, Hu R Z, Xie L W, He D F. 2011. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province[J]. Geochimica et Cosmochimica Acta, 75(5): 1374-1395. doi: 10.1016/j.gca.2010.12.016

    [82]

    Zhong H, Zhu W G, Chu Z Y, He D F, Song X Y. 2007. Shrimp U-Pb zircon geochronology, geochemistry, and Nd-Sr isotopic study of contrasting granites in the Emeishan large igneous province, SW China[J]. Chemical Geology, 236(1-2): 112-133. doi: 10.1016/j.chemgeo.2006.09.004

    [83]

    Zhong H, Zhu W G, Hu R Z, Xie L W, He D F, Liu F, Chu Z Y. 2009. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust[J]. Lithos, 110(1-4): 109-128. doi: 10.1016/j.lithos.2008.12.006

    [84]

    Zhong Y T, He B, Mundil R, Xu Y G. 2014. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province[J]. Lithos, 204: 14-19. doi: 10.1016/j.lithos.2014.03.005

    [85]

    Zhou M F, Arndt N T, Malpas J, Wang C Y, Kennedy A K. 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China[J]. Lithos, 103(3-4): 352-368. doi: 10.1016/j.lithos.2007.10.006

    [86]

    Zhou M F, Chen W T, Wang C Y, Prevec S A, Liu P P, Howarth G H. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China[J]. Geoscience Frontiers, 4(5): 481-502. doi: 10.1016/j.gsf.2013.04.006

    [87]

    Zhou M F, Malpas J, Song X Y, Robinson P T, Sun M, Kennedy A K, Lesher C M, Keays R R. 2002. A temporal link between the Emeishan large Igneous Province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 196(3-4): 113-122. doi: 10.1016/S0012-821X(01)00608-2

    [88]

    Zhou M F, Robinson P T, Lesher C M, Keays R R, Zhang C J, Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China[J]. Journal of Petrology, 46(11): 2253-2280. doi: 10.1093/petrology/egi054

    [89]

    Zhu Y X, Wang L X, Ma C Q, Wiedenbeck M, She Z B. 2022. Titanite as a tracer for Nb mineralization during magmatic and hydrothermal processes: The case of Fangcheng alkaline complex, Central China[J]. Chemical Geology, 608: 121028. doi: 10.1016/j.chemgeo.2022.121028

    [90]

    Zhu Y S, Yang J H, Sun J F, Wang H. 2017. Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks[J]. Geology, 45(5): 407-410. doi: 10.1130/G38872.1

    [91]

    Zindler A, Hart S. 1986. Chemical Geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425

  • 加载中

(5)

(3)

计量
  • 文章访问数:  246
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2024-04-09
修回日期:  2024-05-20
刊出日期:  2024-09-25

目录