热液蚀变与元素迁移:以广西摩天岭北部高芒铀矿化为例

叶凡琛, 王凯兴. 2024. 热液蚀变与元素迁移:以广西摩天岭北部高芒铀矿化为例. 华南地质, 40(4): 655-670. doi: 10.3969/j.issn.2097-0013.2024.04.005
引用本文: 叶凡琛, 王凯兴. 2024. 热液蚀变与元素迁移:以广西摩天岭北部高芒铀矿化为例. 华南地质, 40(4): 655-670. doi: 10.3969/j.issn.2097-0013.2024.04.005
YE Fan-Chen, WANG Kai-Xing. 2024. Hydrothermal Alteration and Element Migration: Taking the Gaomang Area in the North Motianling as an Example. South China Geology, 40(4): 655-670. doi: 10.3969/j.issn.2097-0013.2024.04.005
Citation: YE Fan-Chen, WANG Kai-Xing. 2024. Hydrothermal Alteration and Element Migration: Taking the Gaomang Area in the North Motianling as an Example. South China Geology, 40(4): 655-670. doi: 10.3969/j.issn.2097-0013.2024.04.005

热液蚀变与元素迁移:以广西摩天岭北部高芒铀矿化为例

  • 基金项目: 中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金项目(2023NRE-LH-01)、中国核工业地质局高校科研攻关项目(201619)、东华理工大学研究生创新专项资金项目(DHYC-202408)
详细信息
    作者简介: 叶凡琛(1998—),男,硕士研究生,地质学专业,E-mail:yefanchen@ecut.edu.cn
    通讯作者: 王凯兴(1985—),男,副教授,主要从事矿产普查与勘探研究,E-mail:xy2gmo02@ecut.edu.cn
  • 中图分类号: P595;P614

Hydrothermal Alteration and Element Migration: Taking the Gaomang Area in the North Motianling as an Example

More Information
  • 广西摩天岭北缘高芒地区近年发现多处铀矿化,其分布与围岩蚀变类型及强度具有一定的联系。利用质量平衡计算方法对该地区的新鲜花岗岩、蚀变岩石和矿化岩石的主量、微量元素进行分析,探讨各蚀变带的元素地球化学特征和迁移规律。结果表明,高芒铀矿点成矿物质主要来源于赋矿围岩摩天岭花岗岩体,硅化作用贯穿了整个热液蚀变过程,矿化类型为硅质脉-沥青铀矿型。Eu在矿化中心带大量迁入,说明成矿流体性质相对偏氧化,为U的萃取和富集提供了有利条件。绿泥石化、赤铁矿化和黄铁矿化蚀变促进了成矿元素的聚集。微量元素Li、Be、Cu、Mo、Cs的迁移规律与U相似,暗示它们与U成矿关系密切,可以作为在高芒地区寻找铀矿化的指示标志。本研究为今后在摩天岭地区的铀矿找矿勘查工作提供了一定的依据。

  • 加载中
  • 图 1  摩天岭大地构造位置简图

    Figure 1. 

    图 2  摩天岭区域地质简图

    Figure 2. 

    图 3  高芒地区地质简图

    Figure 3. 

    图 4  高芒铀矿化点围岩及矿石手标本及镜下特征

    Figure 4. 

    图 5  高芒地区新鲜花岗岩、蚀变过渡带岩石、矿化中心带岩石微量元素蛛网图

    Figure 5. 

    图 6  高芒地区新鲜花岗岩、蚀变过渡带岩石、矿化中心带岩石稀土元素配分曲线

    Figure 6. 

    图 7  高芒地区样品Zr-TiO2相关性图解

    Figure 7. 

    图 8  高芒地区样品主量、微量和稀土元素标准化Isocon图解

    Figure 8. 

    表 1  高芒地区样品主量元素分析测试结果(wt.%)

    Table 1.  Test results (wt.%) of major elements analysis of samples in Gaomang area

    样品号 SiO2 TiO2 Al2O3 MnO MgO CaO Na2O K2O P2O5 Fe2O3 LOI Total
    新鲜花岗岩23GM37-4-0176.270.0813.240.030.290.313.083.680.141.051.4799.65
    23GM37-4-0375.230.1213.520.030.330.342.404.880.151.621.3599.97
    23GM37-4-0475.430.0813.210.030.190.462.675.050.121.441.2899.96
    BMyp-177.080.1411.370.030.350.060.115.600.083.181.2899.28
    LK3407Y4H175.810.0713.140.040.080.352.875.670.210.720.8299.77
    P1Y4H174.870.0813.160.060.150.122.025.540.101.591.8899.57
    P3Y1H176.250.0712.290.050.150.172.175.980.081.411.0799.69
    ZK49-1YP375.230.1212.580.090.250.552.414.800.141.901.0199.07
    ZK49-1YP574.970.0913.000.070.200.552.705.120.131.630.8399.29
    ZKG0-1YP577.920.1011.530.080.350.393.273.480.121.440.8099.49
    蚀变过渡带23GM37-4-0277.370.0914.450.010.340.200.041.910.150.883.8299.26
    23GM37-4-0575.650.0713.040.020.270.371.845.550.131.141.3099.37
    23GM37-4-0681.240.059.530.020.840.220.021.280.103.003.1399.43
    23GM37-4-0775.700.0912.420.030.410.830.345.590.121.522.8099.85
    BT611-384.260.078.440.050.270.100.160.460.100.771.8496.53
    YP-223y-572.980.0713.190.060.610.662.505.710.132.351.0499.29
    矿化中心带BT612-277.610.0811.560.030.670.250.131.550.251.871.5995.59
    ZK49-1YPU186.330.066.410.060.390.100.052.480.051.621.6099.16
    ZK49-1YPU287.930.055.740.070.430.090.021.870.051.461.4799.17
    ZK49-2YPU185.440.036.140.070.320.190.831.400.082.801.7499.05
    ZKG0-1YPU178.400.0811.220.060.750.461.414.080.121.560.9399.07
    ZKG0-1YPU377.530.1011.350.060.710.741.084.000.131.501.3698.56
    下载: 导出CSV

    表 2  高芒地区样品微量元素测试分析结果(×10−6

    Table 2.  Test results (×10−6) of trace elements of samples in Gaomang area

    样品号 Li Be Sc V Co Ni Cu Zn Ga Rb Sr Y Zr Nb Mo Cs Ba Hf Ta U Th Pb Th/U
    新鲜花岗岩 23GM37-4-01 18.11 1.94 1.8 3.01 0.94 1.26 14.42 34.95 12.84 251.26 20.19 22.31 78.1 10.76 0.49 11.81 61.46 2.98 2.01 13.37 12.31 18.17 0.92
    23GM37-4-03 13.53 1.87 2.56 7.21 1.52 2.49 9.36 31.37 14.93 326.67 25.6 26.05 84.6 10.26 0.61 11.26 85.2 3.02 1.78 10.35 13.37 27.27 1.29
    23GM37-4-04 11.42 2.39 1.47 3.03 1.11 2.55 15.32 32.77 11.93 335.27 17.07 21.67 83.35 9.51 0.44 12.11 30.79 3.1 1.93 11.45 11.49 22.89 1
    BMyp-1 52.8 0.99 3.44 18.8 15.3 5.09 13.7 39.5 16.1 313 27.5 29.8 127 9.12 0.51 11.1 229 4.71 1.51 33 12.6 22.1 0.38
    LK3407Y4H1 6.73 1.04 3.8 7.52 1 1.76 5.01 32.4 16.4 487 7.34 16.4 77.1 16.3 0.71 16.1 36.7 16.3 3.72 15.5 13.6 21.1 0.88
    P1Y4H1 14.7 2.65 4.07 39.2 1.53 4 9.14 34.8 16.7 399 13.4 26.3 82.6 8.5 4.03 13.2 101 8.5 4.14 36 12.8 27.2 0.36
    P3Y1H1 12.3 2.11 2.62 9.5 1.68 1.26 11.6 29.5 14 350 11.6 24 75.4 3.6 1.06 9.87 32.8 3.6 3.92 27.9 10.9 78 0.39
    ZK49-1YP3 22.5 2.39 4.43 7.86 2.2 2.79 21 54.6 18.1 417 17.3 30.2 96.2 4.5 0.93 19.4 65.4 4.5 1.8 18.4 15.7 23.5 0.85
    ZK49-1YP5 23.4 3.27 3.97 3.47 1.48 1.54 13.1 50.2 17.5 427 15 24.8 90 4.4 0.84 20.1 45 4.4 1.97 47.8 14 24.8 0.29
    ZKG0-1YP5 5.47 1.3 3.16 6.6 1.68 2.58 10.6 38.2 14.6 210 35.7 28.4 92.7 4 1.11 3.36 72.2 4 0.85 20.4 13.3 19.7 0.65
    蚀变过渡带 23GM37-4-02 36.63 1.28 1.82 2.96 0.47 1.04 8.15 22.43 13.66 183.13 7.74 21.12 77.24 10.71 0.14 10.77 31.86 3.04 2.21 11.15 13.59 8.38 1.22
    23GM37-4-05 21.9 1.6 2.2 2.84 0.8 0.58 23.15 17.53 13.29 346.4 24.57 18.58 84.25 8.15 1.25 11.94 116.11 3.18 1.69 16.78 13.84 22.74 0.82
    23GM37-4-06 83.28 2.23 2.98 1.19 9.74 14.07 14.93 113.52 11.82 127.11 24.73 22.92 57.04 7.6 0.15 21.04 28.35 2.31 1.99 17.6 10.21 10.56 0.58
    23GM37-4-07 32.36 1.8 2.81 4.2 1.28 2.73 7.58 40.8 14.05 347.64 39.23 28.72 79.05 8.18 0.27 13.85 85.95 2.95 1.69 23.12 14.53 32.1 0.63
    BT611-3 10.3 2.06 4.07 13.1 1.05 2.01 6.72 12 11.8 39.9 14.8 38.2 72.1 3.6 1.39 5.33 87.6 3.6 0 382 9.67 21.1 0.03
    YP-223y-5 29.4 3.98 3.67 8.07 13.1 3.58 7.1 20.7 18.4 402 21.2 19.5 84.2 9.77 0.5 40.8 74 3.79 2.58 155 10.2 42.7 0.07
    矿化中心带 BT612-2 12.6 1.45 3.33 7.02 1.49 3.33 40 23.4 14.8 113 23 19 89.1 4.2 0.44 7.32 93.5 4.2 0 1131 13.6 8.6 0.01
    ZK49-1YPU1 48 3.02 1.71 5.43 1.97 2.27 97.7 30.3 11.7 280 10.3 12.6 57.5 4 1.99 25.2 51.7 4 1.54 592 8.23 16 0.01
    ZK49-1YPU2 44.2 3.53 1.54 6.07 2.51 2.24 99.8 28.1 11.8 266 8.07 20.1 54.1 3.8 1.35 24.5 31.3 3.8 1.49 575 7.35 13.5 0.01
    ZK49-2YPU1 24.3 2 1.29 3.25 11.8 3.08 10.9 18.8 7.69 155 8.62 27.4 49.4 3.1 1.54 22.5 38.4 3.1 0.61 753 8.01 19.7 0.01
    ZKG0-1YPU1 8.52 1.15 2.88 8.34 2.29 2.45 16 28.8 13.5 92.5 36.3 30.4 78.9 4.1 1.01 2.63 101 4.1 0.31 799 13 72.8 0.02
    ZKG0-1YPU3 46.2 1.76 3.51 7.34 2.93 2.68 26.3 22.4 13.8 73.6 52.7 43.5 96.9 4.3 0.8 4.44 75.3 4.3 0.25 1470 19.5 129 0.01
    下载: 导出CSV

    表 3  高芒地区样品稀土元素测试分析结果(×10−6)和特征参数

    Table 3.  Test results (×10−6) and characteristic parameters of rare earth elements of samples in Gaomang area

    样品号LaCePrNdSmEuGdTbDyHoErTmYbLu∑REE∑LREE/
    ∑HREE
    (La/
    Yb)N
    δEuδCe
    新鲜
    花岗岩
    23GM37-4-0110.0224.552.609.552.710.102.940.684.250.792.090.311.920.2562.753.753.750.111.15
    23GM37-4-0312.2729.123.2011.953.450.173.470.774.700.892.340.362.200.2875.184.014.010.151.11
    23GM37-4-048.7123.092.338.662.480.082.740.634.000.772.040.301.840.2357.893.613.390.091.23
    BMyp-126.8048.305.8420.904.470.314.020.845.410.972.850.452.770.41124.346.026.940.220.90
    LK3407Y4H18.2519.902.357.772.610.082.710.573.310.571.500.221.420.1751.433.914.170.091.09
    P1Y4H19.9423.102.699.163.000.143.380.734.700.942.770.432.810.3864.172.982.540.131.07
    P3Y1H18.5920.702.518.212.620.133.000.644.350.902.680.402.590.3557.672.872.380.141.08
    ZK49-1YP311.8028.603.3311.703.630.144.070.925.731.112.910.432.670.3677.403.253.170.111.10
    ZK49-1YP59.9825.402.9710.503.560.124.070.875.100.942.340.332.000.2868.463.303.580.101.13
    ZKG0-1YP59.4623.002.799.873.300.163.840.905.481.052.650.352.020.2665.132.943.360.141.08
    平均值70.443.663.730.131.10
    蚀变
    过渡带
    23GM37-4-0211.4528.753.0211.093.110.113.050.663.950.741.880.281.610.2069.914.655.090.111.17
    23GM37-4-056.0414.711.676.271.960.082.230.533.390.631.710.261.590.2041.292.912.720.121.12
    23GM37-4-066.2614.311.666.091.900.132.300.553.720.722.030.332.210.2942.492.502.030.191.07
    23GM37-4-0710.1423.712.8310.853.170.153.450.754.970.962.620.412.590.3366.923.162.810.131.07
    BT611-317.1039.506.1629.0010.601.9110.602.1211.201.833.980.552.840.33137.723.124.320.550.94
    YP-223y-57.7717.602.157.972.580.172.390.603.820.692.010.332.140.2850.503.122.600.201.04
    平均值69.583.513.550.161.09
    矿化
    中心带
    BT612-211.3020.802.8510.802.630.352.650.543.310.681.690.251.310.1659.324.606.180.400.88
    ZK49-1YPU12.817.310.943.501.400.091.640.402.640.521.390.211.340.1924.381.931.500.181.10
    ZK49-1YPU22.817.550.993.901.800.122.420.674.300.842.240.322.000.2630.221.321.010.181.11
    ZK49-2YPU13.9210.201.284.962.170.163.220.805.231.072.910.422.550.3439.231.371.100.181.11
    ZKG0-1YPU17.5519.302.378.893.530.404.201.036.241.142.770.382.080.2660.142.322.600.321.11
    ZKG0-1YPU311.7030.403.7614.405.700.696.631.478.691.603.780.512.770.3592.452.583.030.341.12
    平均值50.962.352.570.271.07
    下载: 导出CSV

    表 4  高芒地区主量、微量元素组分在蚀变过渡带和矿化中心带的迁移率(%)

    Table 4.  Mobility of major and trace element components (%) in altered transition zone and mineralized central zone of Gaomang area

    蚀变过渡带 矿化中心带
    23GM37-4-02 23GM37-4-05 23GM37-4-06 23GM37-4-07 BT611-
    3
    YP-223y-5 BT612-
    2
    ZK49-1YPU1 ZK49-1YPU2 ZK49-2YPU1 ZKG0-1YPU1 ZKG0-1YPU3
    SiO2 17 5 66 12 37 1 2 75 90 102 16 −6
    Al2O3 31 8 17 10 −18 9 −9 −22 −26 −13 −1 −18
    MnO −79 −68 −53 −28 20 21 −34 85 123 144 26 2
    MgO 69 23 463 98 43 176 185 160 204 149 259 178
    CaO −30 17 4 181 −62 109 −25 −53 −58 3 58 105
    Na2O −98 −18 −98 −84 −92 11 −95 −97 −99 −37 −33 −58
    K2O −56 17 −60 26 −89 21 −69 −23 −38 −50 −8 −26
    P2O5 31 6 22 2 0 8 94 −36 −41 11 5 −4
    Fe2O3 −37 −25 192 7 −41 55 16 56 50 215 10 −14
    Li 133 27 616 101 −30 71 −31 309 300 141 −47 134
    Be −26 −16 74 1 27 110 −28 134 190 80 −35 −19
    Sc −33 −26 48 1 60 23 6 −16 −19 −26 3 3
    V −68 −72 −83 −56 52 −20 −34 −21 −6 −45 −12 −37
    Co −81 −70 433 −50 −55 385 −48 7 45 645 −9 −6
    Ni −53 −76 764 21 −2 49 31 38 45 118 9 −3
    Cu −24 98 88 −31 −33 −39 223 1123 1228 59 46 95
    Zn −32 −51 367 21 −61 −42 −38 24 22 −11 −14 −46
    Ga 2 −9 20 3 −5 27 −4 18 26 −10 −1 −17
    Rb −40 4 −44 11 −86 20 −68 23 24 −21 −70 −81
    Sr −53 36 102 131 −5 17 20 −17 −31 −19 114 153
    Y −3 −22 43 29 88 −18 −24 −22 32 97 37 59
    Nb 52 6 46 13 −45 27 −48 −24 −23 −31 −43 −51
    Mo −85 22 −78 −71 59 −51 −59 186 106 158 6 −32
    Cs −4 −2 155 21 −49 235 −43 203 213 215 −77 −68
    Ba −52 61 −42 27 42 3 23 5 −32 −9 49 −9
    Hf −37 −39 −35 −40 −20 −28 −24 12 13 1 −16 −29
    Ta 7 −25 31 −20 0 15 0 1 3 −54 −85 −90
    U −45 −25 17 11 1907 597 4708 3800 3926 5674 3736 5646
    Th 20 12 22 25 −9 −17 4 −2 −7 11 12 37
    Pb −66 −16 −42 27 −9 58 −70 −13 −22 24 187 315
    下载: 导出CSV

    表 5  高芒地区稀土元素组分在蚀变过渡带和矿化中心带的迁移率(%)

    Table 5.  Mobility of rare earth element components (%) in altered transition zone and mineralized central zone of Gaomang area

    蚀变过渡带矿化中心带
    23GM37-4-0223GM37-4-0523GM37-4-0623GM37-4-0723GM37-4-08YP-223y-5BT612-
    2
    ZK49-1YPU1ZK49-1YPU2ZK49-2YPU1ZKG0-1YPU1ZKG0-1YPU3
    La14−45−16−282−29−3−63−60−39−27−8
    Ce24−42−16083−30−22−58−53−31−185
    Pr13−43−164148−26−7−53−47−25−1312
    Nd18−39−1312230−22−1−50−41−18−822
    Sm12−35−712310−15−18−32−7222564
    Eu−14−383713153224142−43799212339
    Gd2−31413281−26−23−2616693877
    Tb0−261312245−17−29−1845905378
    Dy−4−242319193−14−30−13501004969
    Ho−5−252520152−19−24−10541154464
    Er−11−253022103−12−30−11521162943
    Tm−11−25452789−2−31−10461101930
    Yb−17−255531571−41−747106514
    Lu−21−285025371−46−144106−18
    下载: 导出CSV
  • [1]

    蔡煜琦,张金带,李子颖,郭庆银,宋继叶,范洪海,刘武生,漆富成,张明林.2015.中国铀矿资源特征及成矿规律概要[J]. 地质学报,89(6):1051-1069. doi: 10.3969/j.issn.0001-5717.2015.06.005

    [2]

    陈 峰,颜丹平,邱 亮,杨文心,汤双立,郭庆银,张翼西.2019.江南造山带西南段摩天岭穹隆脆韧性剪切与铀成矿作用[J]. 岩石学报,35(9):2637-2659. doi: 10.18654/1000-0569/2019.09.02

    [3]

    郭 建. 2014. 相山铀矿田科学深钻岩石铀矿化蚀变作用研究[D]. 核工业北京地质研究院硕士学位论文.

    [4]

    郭 顺,叶 凯,陈 意,刘景波,张灵敏.2013.开放地质体系中物质迁移质量平衡计算方法介绍[J]. 岩石学报,29(5):1486-1498.

    [5]

    韩吟文,马振东. 2003. 地球化学[M]. 北京:地质出版社.

    [6]

    胡瑞忠,毛景文,华仁民,范蔚茗. 2015. 华南陆块陆内成矿作用[M]. 北京:科学出版社.

    [7]

    黄建中,孙 骥,周 超,陆 文,肖 荣,郭爱民,黄革非,谭仕敏,隗含涛.2020.江南造山带(湖南段)金矿成矿规律与资源潜力[J]. 地球学报,41(2):230-252.

    [8]

    李海东,潘家永,夏 菲,周加云,刘 颖,钟福军.2016.相山李家岭铀矿床热液蚀变作用地球化学特征[J]. 现代地质,30(3):555-566. doi: 10.3969/j.issn.1000-8527.2016.03.006

    [9]

    凌其聪,刘丛强.2002.冬瓜山层控夕卡岩型铜矿床成矿流体特征及其成因意义[J]. 吉林大学学报(地球科学版),32(3):219-224.

    [10]

    刘军港,李子颖,黄志章,李秀珍,聂江涛.2017.江西相山CUSD3钻孔铀矿化蚀变带元素活动性探讨[J]. 地质学报,91(4):896-912. doi: 10.3969/j.issn.0001-5717.2017.04.014

    [11]

    刘 灵,杨仪锦,李永刚,王朝宗,林泽渊.2016.贵州从江南加地区钨铜多金属矿的成矿规律及成矿模式初探[J]. 贵州地质,33(4):265-271. doi: 10.3969/j.issn.1000-5943.2016.04.005

    [12]

    马振东,闭向阳,张 凌,蒋敬业,向 武,董 勇,张丽春,乔胜英.2003.长江中游鄂东南铜矿集区铜等重金属元素水环境地球化学特征[J]. 地球化学,32(1):55-61. doi: 10.3321/j.issn:0379-1726.2003.01.008

    [13]

    毛景文. 1988. 桂北九万大山-元宝山地区火成岩系列和锡多金属矿床成矿系列[D]. 中国地质科学院博士学位论文.

    [14]

    牟保磊. 1999. 元素地球化学[M]. 北京:北京大学出版社.

    [15]

    祁家明,徐争启,梁军,唐纯勇,倪师军,张成江,程发贵.2013.桂北376铀矿床微量元素、稀土元素地球化学特征及其意义[J]. 铀矿地质,29(1):1-8. doi: 10.3969/j.issn.1000-0658.2013.01.001

    [16]

    谭 威,曾育龙,林明钟,曾兴宝,林荣添,郭红乐.2023.塞尔维亚Mali Krivelj斑岩型铜矿床热液蚀变作用及元素迁移规律[J]. 矿床地质,42(6):1266-1284.

    [17]

    王翠云,李晓峰,肖 荣,白艳萍,杨 锋,毛 伟,蒋松坤.2012.德兴朱砂红斑岩铜矿热液蚀变作用及元素地球化学迁移规律[J]. 岩石学报,28(12):3869-3886.

    [18]

    王勇剑,聂江涛,林锦荣,庞雅庆,王正庆,秦克章.2022.相山铀矿田云际矿床碱交代型铀矿化蚀变作用及组分迁移规律研究[J]. 岩石学报,38(9):2865-2888. doi: 10.18654/1000.0569/2022.09.20

    [19]

    王正庆,范洪海,陈东欢,郑可志,罗桥花,刘军港,王凤岗,王勇剑.2018.沙子江铀矿外围地化特征、元素迁移及铀成矿机理[J]. 高校地质学报,24(2):185-189.

    [20]

    吴德海,夏 菲,潘家永,刘国奇,黄国龙,刘文泉,吴建勇.2019.粤北棉花坑铀矿床热液蚀变与物质迁移研究[J]. 岩石学报,35(9):2745-2764. doi: 10.18654/1000-0569/2019.09.08

    [21]

    辛 堂. 2017. 贵州省南加地区铀矿构造控矿规律及成矿预测[D]. 成都理工大学硕士学位论文.

    [22]

    徐争启,程发贵,梁 军,唐纯勇,张成江,倪师军,颜秋连,余中美,祁家明,赵永鑫,方永坤.2011.桂北摩天岭岩体铀成矿作用探讨[J]. 矿物学报,31(S1):308-309.

    [23]

    徐争启,宋 昊,尹明辉,张成江,程发贵,唐纯勇.2019.华南地区新元古代花岗岩铀成矿机制—以摩天岭花岗岩为例[J]. 岩石学报,35(9):2695-2710.

    [24]

    颜 越,吴湘滨,欧阳平宁,王前林,刘鑫扬,刘红安.2021.湖南中山铀矿床蚀变分带特征、元素迁移规律及其对成矿流体的约束[J]. 铀矿地质,37(5):780-796.

    [25]

    张炳林,单 伟,李大鹏,肖丙建,王中亮,张瑞忠.2017.胶东大尹格庄金矿床热液蚀变作用[J]. 岩石学报,33(7):2256-2272.

    [26]

    张金带,李子颖,蔡煜琦,郭庆银,李友良,韩长青.2012.全国铀矿资源潜力评价工作进展与主要成果[J]. 铀矿地质,28(6):321-326.

    [27]

    赵振华.1992.微量元素地球化学[J]. 地球科学进展,7(5):65-66.

    [28]

    郑方顺,宋国学.2023.铕异常在地质学中的应用[J]. 岩石学报,39(9):2832-2856. doi: 10.18654/1000-0569/2023.09.17

    [29]

    Bau M, Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9

    [30]

    Bau M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical geology, 93(3-4): 219-230. doi: 10.1016/0009-2541(91)90115-8

    [31]

    Bonnetti C, Riegler T, Liu X, Cuney M. 2023. Granite-related high-temperature hydrothermal uranium mineralisation: evidence from the alteration fingerprint associated with an early Yanshanian magmatic event in the Nanling belt, SE China[J]. Mineralium Deposita, 58(3): 427-460. doi: 10.1007/s00126-022-01137-9

    [32]

    Campbell I H, Lesher C M, Coad P, Franklin J M, Gorton M P, Thurston P C. 1984. Rare-earth element mobility in alteration pipes below massive Cu-Zn-sulfide deposits[J]. Chemical Geology, 45(3-4): 181-202. doi: 10.1016/0009-2541(84)90036-6

    [33]

    Chen Y J, Zhao Y C. 1997. Geochemical characteristics and evolution of REE in the Early Precambrian sediments: Evidence from the southern margin of the North China Craton[J]. Episodes, 20(2): 109-116. doi: 10.18814/epiiugs/1997/v20i2/008

    [34]

    Fourcade S, Allegre C J. 1981. Trace elements behavior in granite genesis: A case study The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France)[J]. Contributions to Mineralogy and Petrology, 76(2): 177-195. doi: 10.1007/BF00371958

    [35]

    Grant J A. 1986. The isocon diagram: A simple solution to Gresens’equation for metasomatic alteration[J]. Economic Geology, 81(8): 1976-1982. doi: 10.2113/gsecongeo.81.8.1976

    [36]

    Guo S, Ye K, Chen Y, Liu J B. 2009. A normalization solution to mass transfer illustration of multiple progressively altered samples using the isocon diagram[J]. Economic Geology, 104(6): 881-886. doi: 10.2113/gsecongeo.104.6.881

    [37]

    Hopf S. 1993. Behaviour of rare earth elements in geothermal systems of New Zealand[J]. Journal of Geochemical Exploration, 47(1-3): 333-357. doi: 10.1016/0375-6742(93)90075-W

    [38]

    Hu R Z, Fu S L, Huang Y, Zhou M F, Fu S H, Zhao C H, Wang Y J, Bi X W, Xiao J F. 2017. The giant South China Mesozoic low temperature metallogenic domain: Reviews and a new geodynamic model[J]. Journal of Asian Earth Science, 137: 9-34. doi: 10.1016/j.jseaes.2016.10.016

    [39]

    Hu R Z, Bi X W, Zhou M F, Peng J T, Su W C, Liu S, Qi H W. 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary[J]. Economic Geology, 103(3): 583-598. doi: 10.2113/gsecongeo.103.3.583

    [40]

    Imai A, Yonezu K, Sanematsu K, Ikuno T, Ishida S, Watanabe K, Pisutha-Arnond V, Nakapadungrat S, Boosayasak J. 2013. Rare earth elements in hydrothermally altered granitic rocks in the Ranong and Takua Pa tin-field, southern Thailand[J]. Resource Geology, 63(1): 84-98. doi: 10.1111/j.1751-3928.2012.00212.x

    [41]

    Jiang Y H, Ling H F, Jiang S Y, Shen W Z, Fan H H, Ni P. 2006. Trace element and Sr-Nd isotope geochemistry of fluorite from the Xiangshan uranium deposit in Southeast China[J]. Economic Geology, 101(8): 1613-1622. doi: 10.2113/gsecongeo.101.8.1613

    [42]

    Jochum K P, Nohl U. 2008. Reference materials in geochemistry and environmental research and the GeoReM database[J]. Chemical Geology, 253: 50-53. doi: 10.1016/j.chemgeo.2008.04.002

    [43]

    Noyes H J, Frey F A, Wones D R. 1983. A tale of two plutons: Geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak plutons, central Sierra Nevada, California[J]. The Journal of Geology, 91(5): 487-509. doi: 10.1086/628801

    [44]

    Palacios C M, Hein U F, Dulski P. 1986. Behaviour of rare earth elements during hydrothermal alteration at the Buena Esperanza copper-silver deposit, Northern Chile[J]. Earth and Planetary Science Letters, 80(3-4): 208-216. doi: 10.1016/0012-821X(86)90105-6

    [45]

    Parsapoor A, Khalili M, Mackizadeh M A. 2009. The behaviour of trace and rare earth elements(REE)during hydrothermal alterationin the Rangan area(central Iran)[J]. Journal of Asian Earth Sciences, 34(2): 123-134. doi: 10.1016/j.jseaes.2008.04.005

    [46]

    Putnis A, John T. 2010. Replacement Processes in the Earth's Crust[J]. Elements, 6(3): 159-164. doi: 10.2113/gselements.6.3.159

    [47]

    Qin K Z, Wang Z T. 1994. Rare earth element behaviour in the Wunugetushan copper-molybdenum deposit, Inner Mongolia, and its implications[J]. Acta Geologica Sinica, 7(2): 153-167. doi: 10.1111/j.1755-6724.1994.mp7002004.x

    [48]

    Qiu L, Yan D P, Ren M H, Cao W T, Tang S L, Guo Q Y, Fan L T, Qiu J T, Zhang Y X, Wang Y W. 2018. The source of uranium within hydrothermal uranium deposits of the Motianling mining district, Guangxi, South China[J]. Ore Geology Reviews, 96: 201-217. doi: 10.1016/j.oregeorev.2018.04.001

    [49]

    Qiu L, Yan D P, Tang S L, Arndt N T, Fan L T, Guo Q Y, Cui J Y. 2015. Cooling and exhumation of the oldest Sanqiliu uranium ore system in Motianling district, South China Block[J]. Terra Nova, 27(6): 449-457. doi: 10.1111/ter.12179

    [50]

    Qiu L, Yan D P, Tang S L, Chen F, Song Z D, Gao T, Zhang Y X. 2020. Insights into post-orogenic extension and opening of the Palaeo-Tethys Ocean recorded by an Early Devonian core complex in South China[J]. Journal of Geodynamics, 135: 101708. doi: 10.1016/j.jog.2020.101708

    [51]

    Richter L, Diamond L W, Atanasova P, Banks D A, Gutzmer J. 2018. Hydrothermal formation of heavy rare earth element(HREE)-xenotime deposits at 100 ℃ in a sedimentary basin[J]. Geology, 46(3): 263-266. doi: 10.1130/G39871.1

    [52]

    Schneider H J, Oezguer N, Palacios C M. 1988. Relationship between alteration, rare earth element distribution, and mineralization of the Murgul copper deposit, northeastern Turkey[J]. Economic Geology, 83(6): 1238-1246. doi: 10.2113/gsecongeo.83.6.1238

    [53]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

  • 加载中

(8)

(5)

计量
  • 文章访问数:  113
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2024-10-31
修回日期:  2024-11-16
刊出日期:  2024-12-20

目录