Control of Structure on the Distribution and Morphological Characteristics of Ore Bodies in Hainan Shilu Iron Deposit
-
摘要:
石碌复向斜是石碌铁矿的主控构造,既有弯滑弯流褶皱(顺层剪切作用形成)的特征,也有中和面褶皱的特征。本文通过总结石碌矿区铁矿体的分布和形态发现:铁矿体主要分布区位于次级褶皱的翼部,相当于弯滑弯流褶皱的剪切应变区(简单剪切应变);次要分布区为次级褶皱的核部,相当于中和面褶皱的挤压区(纯剪应变);铁矿体,特别是富铁矿体在纵弯褶皱翼部多为扁长透镜体状、似层状,与顺层剪切作用中应变透镜体形态接近;在核部则多为粗短透镜状或不规则团块状,也与中和面褶皱作用中挤压应变透镜体形态接近。石碌复式向斜不仅改造、控制了铁矿体的形态和分布,还与富铁矿体的富集和形成密切相关。石碌矿区铁矿体的分布和形态特征反映了纵弯褶皱的控矿规律,是纵弯褶皱成矿作用的宏观反映,也是纵弯褶皱成矿的一个宏观证据。
Abstract:The Shilu syncline is the main controlling structure of the Shilu iron mine, which is characterized by both flexural slip/flexural flow folds (formed by bedding shear) and neutral-plane folds. Based on the distribution and morphology of iron ore bodies in the Shilu mine, it is found that the main distribution area of iron ore bodies is located in the flanks of the secondary folds, which is equivalent to the shear strain zone of the flexural slip/flexural flow folds(simple shear strain). The secondary distribution area is located in the core of the secondary folds, which corresponds to the compressional strain region (pure shear strain) of the neutral-plane folds. The iron bodies, especially the rich ones, are mostly elongated lens-like and lamellar in the flanks of the longitude-bending folds, which are similar to the strain lens in bedding shearing. In the core area, the ore bodies occur mostly in coarse lenticular or irregular mass, which is also in close relationship to the shape of the compressional strain lens in the folding of the neutral-plane. The Shilu complex syncline not only modifies and controls the form and distribution of the iron ore bodies but also contributes to the enrichment and formation of rich iron bodies. The distribution and morphological characteristics of iron ore bodies in the Shilu mining area reflect the metallogenic law of longitudinal folds, which is a macroscopic reflection of longitudinal folds mineralization and macroscopic evidence of longitudinal folds mineralization.
-
-
[1] 陈 龙,施 炜.2014.叠加褶皱研究进展综述[J]. 地质力学学报,20(4):455-468. doi: 10.3969/j.issn.1006-6616.2014.04.013
[2] 陈沐龙,李孙雄,官 军,曾雁玲.2011.海南岛西部青白口系石碌群褶皱变形特征及其控矿分析[J]. 华南地质与矿产,27(4):265-272.
[3] 杜保峰,魏俊浩,李艳军,石文杰,燕长海,赵少卿,裴中朝,白国典.2012.海南石碌铁钴铜矿床成因及其成矿模式[J]. 中国地质,39(1):170-182. doi: 10.3969/j.issn.1000-3657.2012.01.017
[4] 杜思清.1986.纵湾褶皱叠加的褶移现象和移褶叠加褶皱[J]. 地质论评,32(4):359-366. doi: 10.3321/j.issn:0371-5736.1986.04.006
[5] 冯建良,王静纯.1980.论海南石碌铁矿成因[J]. 地质与勘探,(12):21-28.
[6] 海南省地质调查院. 2017. 中国区域地质志·海南志[M]. 北京:科学出版社.
[7] 侯 威,肖 勇,陈翻身.2007.海南岛石碌韧性剪切带的主要特征与“北一”式铁矿的成因[J]. 地质科学,42(3):483-495. doi: 10.3321/j.issn:0563-5020.2007.03.006
[8] 贾精一,贾维民,高德臻.1985.石碌群的“W”型的叠加褶皱及大型组构解析[J]. 中国区域地质,12(2):79-90.
[9] 冷盛强,李配兰.1979.海南岛石碌矿区富铁矿形成的物理化学条件实验研究[J]. 中南矿冶学院学报,(3):116-128.
[10] 李厚民,李延河,李立兴,李志红,付建飞,侯可军,范昌福.2022.沉积变质型铁矿成矿条件及富铁矿形成机制[J]. 地质学报,96(9):3211-3233.
[11] 廖 震,王玉往,王京彬,张会琼,王静纯.2011.论中生代岩浆活动对海南石碌富铁矿床的改造作用[J]. 矿床地质,30(5):903-911. doi: 10.3969/j.issn.0258-7106.2011.05.011
[12] 刘成湛,邓衍凡.1977.海南石碌铁矿矿物和岩石PH值的测定及矿床成因问题[J]. 中南矿冶学院学报,(3):81-85.
[13] 吕古贤.1988.海南岛石碌铁矿含矿岩系中火山岩类的新发现与研究[J]. 中国区域地质,(1):52-56.
[14] 吕古贤.2019.构造动力成岩成矿和构造物理化学研究[J]. 地质力学学报,25(5):962-980. doi: 10.12090/j.issn.1006-6616.2019.25.05.079
[15] 钱建平.2002.构造动力成矿理论若干问题的探讨[J]. 地质地球化学,30(4):1-6.
[16] 孙 剑,朱祥坤,李志红,陈福雄.2014.海南石碌铁矿碧玉及其对矿床成因的制约[J]. 岩石学报,30(5):1269-1278.
[17] 王寒竹.1983.广东海南岛石碌铁矿富钾流纹质熔结凝灰岩的发现及其意义[J]. 地球科学,8(2):99-113.
[18] 王寒竹.1985.广东海南岛石碌铁矿石英的研究及其意义[J]. 地球科学,10(2):77-83+170.
[19] 王智琳,许德如,MONIKA Agnieszka Kusiak,吴传军,于亮亮.2015.海南石碌铁矿独居石的成因类型、化学定年及地质意义[J]. 岩石学报,31(1):200-215.
[20] 许德如,王 力,肖 勇,刘朝露,符启基,蔡周荣,黄居锐.2008.“石碌式”铁氧化物-铜(金)-钴矿床成矿模式初探[J]. 矿床地质,27(6):681-694. doi: 10.3969/j.issn.0258-7106.2008.06.002
[21] 许德如,吴 俊,肖 勇,陈福雄,王 力,刘朝露,王智琳.2011.海南石碌铁矿床构造变形特征及其与铁多金属成矿富集的关系[J]. 地质通报,30(4):553-564. doi: 10.3969/j.issn.1671-2552.2011.04.012
[22] 许德如,肖 勇,夏 斌,蔡仁杰,侯 威,王 力,刘朝露,赵 斌. 2009. 海南石碌铁矿床成矿模式与找矿预测[M]. 北京:地质出版社.
[23] 许德如,吴传军,吕古贤,周岳强,于亮亮,张健岭,胡国成,侯茂洲.2015.岩石流变学原理在构造成矿中的应用——以BIF型富铁矿床为例[J]. 大地构造与成矿学,39(1):93-109. doi: 10.3969/j.issn.1001-1552.2015.01.010
[24] 杨 坚, 林志锦, 张九铉.2020.海南石碌铁矿床控矿因素分析[J]. 中国金属通报,(6):291-292.
[25] 杨开庆,董法先,王建平,李中坚,吕古贤,杨玉东.1988.海南石碌矿区铁、金、铜、钴矿构造动力成矿作用的研究[J]. 中国地质科学院地质力学研究所所刊,(11):83-152.
[26] 杨旭罡,胡宝群,高海东,许德如,李满根,郭 涛.2013.海南石碌铁矿北一南六矿体地球化学特征[J]. 地质力学学报,19(4):403-412. doi: 10.3969/j.issn.1006-6616.2013.04.006
[27] 余金杰,何胜飞,车林睿,王铁柱.2014.海南石碌铁矿成矿流体特征及成因[J]. 地质学报,88(3):389-406.
[28] 袁奎荣,侯光汉,李公时,梁金城.1977.海南石碌铁矿的成因和富铁矿与构造的关系[J]. 中南矿冶学院学报,(3):26-43.
[29] 张 艳,韩润生,胡体才,魏平堂,王 磊.2023.构造‒流体‒成矿耦合机制——以会泽超大型富锗铅锌矿床为例[J]. 大地构造与成矿学,47(5):969-983.
[30] 赵劲松,夏 斌,丘学林,赵 斌,许德如,冯佐海,李兆麟,沈敢富,胡瑞忠,苏文超,秦朝建,秦伟民,符 贤,胡志高.2008.海南岛石碌矽卡岩铁矿石中石榴子石的熔融包裹体及其意义[J]. 岩石学报,24(1):149-160.
[31] 中国地质调查局发展研究中心. 2015. 中国大地构造图(1∶2500000)[M]. 北京:地质出版社.
[32] 中国科学院华南富铁科学研究队. 1986. 海南岛地质与石碌铁矿地球化学[M]. 北京:科学出版社.
[33] Roberts S, Sanderson D J, Gumiel P. 1995. Fractal analysis of Sn-W mineralization from Central Iberia: insights into the role of fracture connectivity in the formation of an ore deposit[J]. Economic Geology, 93(3): 360-365.
[34] Wang Z L, Xu D R, Wu C J, Yu L L, Wang L. 2014. Mineralogy and Metallogeny of the Shilu Co‐Cu Ore Deposit in Hainan Province of South China[J]. Acta Geologica Sinica, 88(2): 1679-1680.
[35] Xu D R, Wang Z L, Cai J X, Wu C J, Bakun-Czubarow N, Wang L, Chen H Y, Baker M J, Kusiak M A. 2013. Geological characteristics and metallogenesis of the Shilu Fe-ore deposit in Hainan Province, South China[J]. Ore Geology Reviews, 53: 318-342. doi: 10.1016/j.oregeorev.2013.01.015
[36] Xu D R, Wang Z L, Chen H Y, Hollings P, Jansend N H, Zhang Z C and Wu C J. 2014. Petrography and geochemistry of the Shilu Fe-Co-Cu ore district, South China: implications for the origin of a Neoproterozoic BIF system[J]. Ore Geology Reviews, 57: 322-350. doi: 10.1016/j.oregeorev.2013.08.011
[37] Xu D R, Kusiak M A, Wang Z L, Chen H Y, Bakun-Czubarow N, Wu C J, Konečný P, Hollings P. 2015. Microstructural observation and chemical dating on monazite from the Shilu Group, Hainan Province of South China: Implications for origin and evolution of the Shilu Fe-Co-Cu ore district[J]. Lithos, 216-217: 158-177. doi: 10.1016/j.lithos.2014.12.017
-