Research Progress on the Instability Mechanisms and Stability Evaluation Method of Buckling Landslides
-
摘要:
溃屈型滑坡作为常见的山地灾害,其动力演化过程较为复杂,涉及主动区顺层滑移和被动区弯曲隆起的变形协同,以及主动区和被动区范围的动态变化;开展相关研究通常需要对上述复杂过程进行简化处理,导致现有的溃屈型滑坡研究方法种类繁多但普适性有限。基于文献计量分析方法,本文对溃屈型滑坡相关文献的数量、期刊和关键词进行梳理,系统分析溃屈型滑坡领域的研究现状及发展趋势。在此基础上,首先分类探讨了理论解析、模型试验和数值模拟等溃屈型滑坡失稳机制及稳定性分析方法;随后,系统探讨了溃屈型滑坡稳定性的影响因素,包括岩层倾角、岩层厚度、岩性、滑移面黏聚力和内摩擦角等内在因素,以及水和地震等触发因素。最后,本文对溃屈型滑坡领域未来的研究和实践方向进行了展望。
Abstract:As the common mountainous hazard, the buckling landslide is characterized by complicated dynamic evolution process, which involves the synergistic deformation of the sliding of active zone and the bending-bulging of passive zone, and the dynamic alteration of the ranges of active and passive zones. The simplification of aforementioned evolution process is usually necessary for relevant research on buckling landslides, resulting in a variety of research methods with limited applicability. By using the bibliometric analysis, this paper summarizes the numbers, journals and key words of related literature on the buckling landslides, and systematically reviews the situation and development trend of this research topic. On that basis, the mainstream methods for the bucking mechanism and stability analysis, including the analytical solution, model experiment and numerical simulation, are summarized and discussed; Then, the summary on the influencing factors, including the intrinsic factors such as the dip and thickness of rock layer, the lithology, the cohesion and internal friction angle of basal sliding surface, and the triggering factors such as the water and the earthquake, is performed. Finally, some prospects for the future study and practice in the research field of buckling landslides are provided.
-
Key words:
- buckling landslide /
- bibliometric analysis /
- analysis method /
- influencing factor
-
-
表 1 溃屈破坏典型事件及其相关信息
Table 1. Buckling failure events and associated information
事件名称 坡长(m) 坡高(m) 岩层倾角(°) 岩层厚度 岩性组合 文献来源 Malvern Hills边坡溃屈 22.5 15 45 薄层 互层泥岩、板岩 Seale, 2007 Quinette矿山溃屈 173 120 44~50 薄−中层 互层砂岩、页岩 Wang B et al., 2004 Westfield矿山溃屈 160 95 34~40 薄层 互层泥岩 Scoble, 1981 Lavini di Marco斜坡溃屈 454 200 25~29 薄−中层 石灰岩、泥岩 Tommasi et al., 2009 新磨滑坡 1170 400 43~53 中厚层 石英砂岩、千枚岩 Zhao S Y et al., 2018 大奔流滑坡 1462 265 25~40 薄−中层 大理岩、泥岩 丁戈媛和胡新丽, 2020 藕塘滑坡 1800 610 24~29 中厚层 砂岩粉砂岩互层 肖捷夫, 2021 木鱼包滑坡 1500 420 27 中−厚层 砂岩、炭质页岩 Zhou C et al., 2020 -
[1] 陈 达,许 强,郑 光,王 卓,蒋金晶,刘建强.2021.顺层边坡溃曲变形形成条件及其与层面倾角的关系[J]. 科学技术与工程,21(7):2616-2625. doi: 10.3969/j.issn.1671-1815.2021.07.008
[2] 成永刚,王玉峰.2011.层面倾角对顺层岩质滑坡贡献率研究[J]. 岩土力学,32(12):3708-3712. doi: 10.3969/j.issn.1000-7598.2011.12.028
[3] 丁戈媛,胡新丽.2020.大奔流顺层岩质滑坡溃屈型破坏力学机制研究[J]. 地质科技通报,39(2):186-190.
[4] 杜应琼,任光明,杜 飞,朱少帅,余天彬.2014.顺层斜坡溃屈变形物理模拟及影响因素敏感性分析[J]. 四川理工学院学报(自然科学版),27(6):68-71.
[5] 冯 君,周德培,李安洪.2005.顺层岩质边坡开挖稳定性研究[J]. 岩石力学与工程学报,24(9):1474-1478. doi: 10.3321/j.issn:1000-6915.2005.09.003
[6] 冯 君,周德培,杨 涛.2010.用弹塑性板理论分析顺层边坡的弯曲失稳[J]. 岩土工程学报,32(8):1184-1188.
[7] 龚 涛. 2009. 顺层岩质边坡稳定性研究[D]. 西安理工大学硕士学位论文.
[8] 黄润秋.2007.20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001
[9] 黄润秋. 2009. 汶川8. 0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报,28(6):1239-1249.
[10] 李安洪,周德培,冯 君.2009.顺层岩质路堑边坡破坏模式及设计对策[J]. 岩石力学与工程学报,28(S1):2915-2921. doi: 10.3321/j.issn:1000-6915.2009.z1.048
[11] 李树森,任光明,左三胜.1995.层状结构岩体顺层斜坡失稳机理的力学分析[J]. 地质灾害与环境保护,6(2):24-29.
[12] 廖丽萍,朱颖彦,杨志全,邹代华,Muhammad Waseem.2016.中巴喀喇昆仑公路顺层岩质边坡受力分析[J]. 地下空间与工程学报,12(1):243-249.
[13] 刘小丽,周德培.2002.用弹性板理论分析顺层岩质边坡的失稳[J]. 岩土力学,23(2):162-165. doi: 10.3969/j.issn.1000-7598.2002.02.006
[14] 孙广忠. 1988. 岩体结构力学[M]. 北京:科学出版社.
[15] 孙广忠,张文彬.1985.一种常见的岩体结构——板裂结构及其力学模型[J]. 地质科学,20(3):275-282.
[16] 汤明高,马 旭,张婷婷,黄润秋,李九乾.2016.顺层斜坡溃屈机制与早期识别研究[J]. 工程地质学报,24(3):442-450.
[17] 王佳运,王根龙,石小亚.2019.陕西山阳特大型滑坡视向滑移-溃屈破坏力学分析[J]. 中国地质,46(2):381-388. doi: 10.12029/gc20190214
[18] 王秋生,张瑞涛,郑 宏.2022.Malvern Hills边坡溃曲破坏分析及数值流形法模拟[J]. 岩土力学,43(7):1951-1960.
[19] 肖捷夫. 2021. 库水涨落和降雨条件下藕塘滑坡变形演化机制及其预测模型研究[D]. 中国地质大学(武汉)博士学位论文.
[20] 张勃成,唐辉明,申培武,宁奕冰,夏 丁.2020.基于岩石损伤与水力作用的顺层岩质边坡临界失稳高度研究[J]. 安全与环境工程,27(2):42-49.
[21] 张彦君. 2019. 顺层岩质边坡地震稳定性及滑坡运移过程DDA模拟方法[D]. 大连理工大学博士学位论文.
[22] 张彦君,年廷凯,王 亮,唐 军.2019.岩质边坡物理模型试验相似材料研究[J]. 西南交通大学学报,54(1):55-60+72.
[23] 张倬元,王士天,王兰生,黄润秋,许 强,陶连金. 2016. 工程地质分析原理(第4版)[M]. 北京:地质出版社.
[24] 朱晗迓,马美玲,尚岳全.2004.顺倾向层状岩质边坡溃屈破坏分析[J]. 浙江大学学报(工学版),38(9):1144-1149.
[25] Adhikary D P, Mühlhaus H B, Dyskin A V. 2001. A numerical study of flexural buckling of foliated rock slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 25(9): 871-884. doi: 10.1002/nag.157
[26] Bandis S C, Lumsden A C, Barton N R. 1983. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics Mining Sciences & Geomechanics Abstracts, 20: 249-268.
[27] Cavers D S. 1981. Simple methods to analyze buckling of rock slopes[J]. Rock Mechanics, 14: 87-104. doi: 10.1007/BF01239857
[28] Dai Z W, Zhang Y J, Zhang C Y, Luo J H, Yao W. 2022. Interpreting the Influence of Reservoir Water Level Fluctuation on the Seepage and Stability of an Ancient Landslide in the Three Gorges Reservoir Area: A Case Study of the Outang Landslide[J]. Geotechnical and Geological Engineering, 40(9): 4551-4561. doi: 10.1007/s10706-022-02170-1
[29] Dai Z W, Zhang Y J, Zhang C Y, Fu X L, Zhang P, Ye R Q. 2024. A photographic method to identify reservoir geohazards induced by rock mass deterioration of hydro-fluctuation belt[J]. Frontiers in Earth Science, 12: 1365272. doi: 10.3389/feart.2024.1365272
[30] Eberhardt E, Stead D. 1998. Mechanisms of slope instability in thinly bedded surface mine slopes[C]. //Moore D P, Hungr O, Balkema A A, eds. Proceedings, 8th Congress of the International Association for Engineering Geology and the Environment, Vancouver.
[31] Fan X M, Xu Q, Scaringi G, Dai L X, Li W L, Dond X J, Zhu X, Pei X J, Dai K R, Havenith H B. 2017. Failure mechanism and kinematics of the deadly june 24th 2017 Xinmo landslide, maoxian, sichuan, China[J]. Landslides, 14(3): 2129-2146.
[32] Garzon S E R. 2016. Analytical solution for assessing continuum buckling in sedimentary rock slopes based on the tangent-modulus theory[J]. International Journal of Rock Mechanics and Mining Science, 90: 53-61. doi: 10.1016/j.ijrmms.2016.10.002
[33] Ghasemi M, Corkum A G. 2020. A three hinge buckling laboratory test[J]. Rock Mechanics and Rock Engineering, 53: 4077-4090. doi: 10.1007/s00603-020-02143-x
[34] Ghasemi M, Corkum A G. 2022. Experiment and numerical study on three hinge buckling[J]. Rock Mechanics and Rock Engineering, 56: 2049-2063.
[35] Goodman R E. 1980. Introduction to Rock Mechanics[M]. New York: John Wiley and Sons.
[36] Goodman R E, Taylor R L, Brekke T L. 1968. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,94(3): 637-659.
[37] Hoek E, Bray J. 1977. Rock Slope Engineering. revised second edition[M]. London: Publication of Institution of Mining and Metallurgy.
[38] Jin L L, Ju G H, Chen Z F, Xiao Q F, Fu W X, Ye F, Wei Y F. 2024. An analytical solution to predict slip-buckling failure of bedding rock slopes under the influence of top loading and earthquakes: Case studies of Hejia landslide and Tangjiashan landslide[J]. Landslides, 21: 152-169.
[39] Khosravi M H, Tang L, Pipatpongsa T, Takemura J, Doncommul P. 2012. Performance of counterweight balance on stability of undercut slope evaluated by physical modeling[J]. International Journal of Geotechnical Engineering, 6(2): 193-205. doi: 10.3328/IJGE.2012.06.02.193-205
[40] Kuttėr H K. 1972. Mechanisms of Slope Failure Other Than Pure Sliding[M]. //Müller L, eds. Rock Mechanics. International Centre for Mechanical Sciences. Springer, Vienna.
[41] Li B, Huang D, Zhu Y Z. 2022. A complex slide-buckling-toppling failure of under-dip soft rock slopes[J]. European Journal of Environmental and Civil Engineering, 26(9): 4146-4169. doi: 10.1080/19648189.2020.1839791
[42] Li Y Y, Feng X Y, Yao A J, Zhang Z H, Li K, Wang Q S, Song S Y. 2022. Progressive evolution and failure behavior of a Holocene river-damming landslide in the SE Tibetan plateau, China[J]. Landslides, 19(5): 1069-1086. doi: 10.1007/s10346-021-01835-x
[43] Liu H Y, Wang G H, Huang F. 2016. Methods to analyze flexural buckling of the consequent slabbed rock slope under top loading[J]. Mathematical Problem in Engineering, 3402547.
[44] Lo C M, Weng M C. 2017. Identification of deformation and failure characteristics in cataclinal slopes using physical modeling[J]. Landslides, 14(2): 499-515. doi: 10.1007/s10346-016-0735-1
[45] Nemcok A, Pasek J, Rybar J. 1972. Classification of landslides and other mass movements[J]. Rock Mechanics, 4: 71-78. doi: 10.1007/BF01239137
[46] Pant S R, Adhikary D P. 1999. Implicit and explicit modelling of flexural buckling of foliated rock slopes[J]. Rock Mechanics and Rock Engineering, 32(2): 157-164. doi: 10.1007/s006030050029
[47] Pei Z W, Zhang Y J, Nian T K, Song X L, Zhao W. 2023a. Performance investigation of micropile groups in stabilizing unstable talus slopes via centrifuge model tests[J]. Canadian Geotechnical Journal, 60(3): 351-365. doi: 10.1139/cgj-2021-0681
[48] Pei Z W, Zhang Y J, Nian T K, Xiao S G, Liu H S. 2023b. Cross-Scale Analysis on the Working Performance of Micropile Group and Talus Slope System[J]. Sustainability, 15: 8154. doi: 10.3390/su15108154
[49] Pereira L C, Lana M S. 2013. Stress-strain analysis of buckling failure in phyllite slopes[J]. Geotechnical and Geological Engineering, 31(1): 297-314. doi: 10.1007/s10706-012-9556-8
[50] Qi S W, Lan H X, Dong J Y. 2015. An analytical solution to slip buckling slope failure triggered by earthquake[J]. Engineering Geology, 194: 4-11. doi: 10.1016/j.enggeo.2014.06.004
[51] Qin S, Jiao J J, Wang S. 2001. A cusp catastrophe model of instability of slip-buckling slope[J]. Rock Mechanics and Rock Engineering, 34(2): 119-134. doi: 10.1007/s006030170018
[52] Ridl R N, Bell D H, Villenueve M C, Macfarlane D F. 2021. A simple method to model buckling slope instability using continuum numerical models[M]. //The Evolution of Geotech-25 Years of Innovation. CRC Press: 443-449.
[53] Scoble M J. 1981. Studies of Ground Deformation in British Surface Coal Mines [D]. Nottingham: University of Nottingham, Mining Engineering Department.
[54] Seale J. 2007. An Engineering Geological Investigation of Footwall Toe-Buckle Instability at the Malvern Hills Opencast Coal Mine[D]. Christchurch, New Zealand: University of Canterbury.
[55] Stead D, Eberhardt E. 1997. Developments in the analysis of footwall slopes in surface coal mining[J]. Engineering Geology, 46(1): 41-61. doi: 10.1016/S0013-7952(96)00084-1
[56] Shou K J, Wang C F. 2003. Analyis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan[J]. Engineering Geology, 68(3-4): 237-250. doi: 10.1016/S0013-7952(02)00230-2
[57] Silva C, Lana M S. 2014. Numerical modeling of buckling failure in a mine slope[J]. Revista Escola de Minas, 67(1): 81-86. doi: 10.1590/S0370-44672014000100012
[58] Tommasi P, Campedel P, Consorti C, Ribacchi R. 2008. A discontinuous approach to the numerical modelling of rock avalanches[J]. Rock Mechanics and Rock Engineering, 41(1): 37-58. doi: 10.1007/s00603-007-0133-z
[59] Tommasi P, Verrucci L, Campedel P, Veronese L, Pettinelli E, Ribacchi R. 2009. Buckling of high natural slopes: the case of lavini di marco (trento-Italy)[J]. Engineering Geology, 109: 93-108. doi: 10.1016/j.enggeo.2009.02.002
[60] Wang B, Cavers D S, Wong B C. 2004. Surface buckling failure study and support design at the Quintette coal mine, Canada[M]. // Lacerda W, et al. , eds. Landslides: Evaluation and Stabilization. London: CRC Press: 475-480.
[61] Wang Q S, Zhang R T, Zheng H, Zhou P Z. 2023. An analytical solution of critical sliding displacement for the flexural buckling failure of layered rock slopes[J]. International Journal of Rock Mechanics and Mining Sciences, 169: 105450. doi: 10.1016/j.ijrmms.2023.105450
[62] Weng M C, Lo C M, Wu C H, Chuang T F. 2015. Gravitational deformation mechanisms of slate slopes revealed by model tests and discrete element analysis[J]. Engineering Geology, 189: 116-132. doi: 10.1016/j.enggeo.2015.01.024
[63] Weng M C, Chen T C, Tsai S J. 2017. Modeling scale effects on consequent slope deformation by centrifuge model tests and the discrete element method[J]. Landslides, 14(3): 981-993. doi: 10.1007/s10346-016-0774-7
[64] Zhang Q, Hu J, Du Y L, Gao Y, Li J Z. 2021. A laboratory and field-monitoring experiment on the ability of anti-slide piles to prevent buckling failures in bedding slopes[J]. Environmental Earth Sciences, 80: 44. doi: 10.1007/s12665-020-09288-6
[65] Zhang S C, Fan Q Y, Niu Y F, Qiu S C, Si J Z, Feng Y H, Zhang S Q, Song Z W, Li Z H. 2020. Two-dimensional deformation monitoring for spatiotemporal evolution and failure mode of Lashagou landslide group, Northwest China[J]. Landslides, 20: 447-459.
[66] Zhang Y J, Nian T K, Guo X S, Chen G Q, Zheng L. 2019. Modelling the flexural buckling failure of stratified rock slopes based on the multilayer beam model[J]. Journal of Mountain Sciences, 16(5): 1170-1183. doi: 10.1007/s11629-018-5007-1
[67] Zhao S Y, Chigira M, Wu X Y. 2018. Buckling deformations at the 2017 Xinmo landslide site and nearby slopes, Maoxian, Sichuan, China[J]. Engineering Geology, 246: 187-197. doi: 10.1016/j.enggeo.2018.09.033
[68] Zhou C, Cao Y, Yin K L, Wang Y, Shi X G, Catani F, Ahmed B. 2020. Landslide characterization applying Sentinel-1 images and Insar technique: the Muyubao Landslide in the Three Gorges Reservoir Area, China[J]. Remote Sensing, 12: 3385. doi: 10.3390/rs12203385
-