溃屈型滑坡失稳机制及稳定性评价方法研究进展

施佳乐, 张彦君, 范宁, 谭建民, 裴来政, 叶润青, 刘磊. 2025. 溃屈型滑坡失稳机制及稳定性评价方法研究进展. 华南地质, 41(1): 38-50. doi: 10.3969/j.issn.2097-0013.2025.01.003
引用本文: 施佳乐, 张彦君, 范宁, 谭建民, 裴来政, 叶润青, 刘磊. 2025. 溃屈型滑坡失稳机制及稳定性评价方法研究进展. 华南地质, 41(1): 38-50. doi: 10.3969/j.issn.2097-0013.2025.01.003
SHI Jia-Le, ZHANG Yan-Jun, FAN Ning, TAN Jian-Min, PEI Lai-Zheng, YE Run-Qing, LIU Lei. 2025. Research Progress on the Instability Mechanisms and Stability Evaluation Method of Buckling Landslides. South China Geology, 41(1): 38-50. doi: 10.3969/j.issn.2097-0013.2025.01.003
Citation: SHI Jia-Le, ZHANG Yan-Jun, FAN Ning, TAN Jian-Min, PEI Lai-Zheng, YE Run-Qing, LIU Lei. 2025. Research Progress on the Instability Mechanisms and Stability Evaluation Method of Buckling Landslides. South China Geology, 41(1): 38-50. doi: 10.3969/j.issn.2097-0013.2025.01.003

溃屈型滑坡失稳机制及稳定性评价方法研究进展

  • 基金项目: 湖北省自然科学基金项目(2021CFB280);中国地质调查局武汉地质调查中心“潜龙计划”青年人才项目(QL2022-10);三峡后续工作地质灾害防治项目(000121 2024C C60 002);中国地质调查局项目(DD20221740)
详细信息
    作者简介: 施佳乐(1998—),男,硕士研究生,主要从事地质灾害物理模拟方面的研究工作,E-mail:1065814774@qq.com
    通讯作者: 张彦君(1991—),男,博士,高级工程师,主要从事地质灾害机理和演化过程方面的研究工作,E-mail:yjzhang_cgs@163.com
  • 中图分类号: P642.22

Research Progress on the Instability Mechanisms and Stability Evaluation Method of Buckling Landslides

More Information
  • 溃屈型滑坡作为常见的山地灾害,其动力演化过程较为复杂,涉及主动区顺层滑移和被动区弯曲隆起的变形协同,以及主动区和被动区范围的动态变化;开展相关研究通常需要对上述复杂过程进行简化处理,导致现有的溃屈型滑坡研究方法种类繁多但普适性有限。基于文献计量分析方法,本文对溃屈型滑坡相关文献的数量、期刊和关键词进行梳理,系统分析溃屈型滑坡领域的研究现状及发展趋势。在此基础上,首先分类探讨了理论解析、模型试验和数值模拟等溃屈型滑坡失稳机制及稳定性分析方法;随后,系统探讨了溃屈型滑坡稳定性的影响因素,包括岩层倾角、岩层厚度、岩性、滑移面黏聚力和内摩擦角等内在因素,以及水和地震等触发因素。最后,本文对溃屈型滑坡领域未来的研究和实践方向进行了展望。

  • 加载中
  • 图 1  顺层岩质边坡溃屈变形破坏示意图

    Figure 1. 

    图 2  2005年至2022年WoS数据库中溃屈型滑坡相关研究的文章数量

    Figure 2. 

    图 3  关键词共现分析

    Figure 3. 

    图 4  关键词聚类分析

    Figure 4. 

    图 5  关键词凸显分析

    Figure 5. 

    图 6  压杆模型

    Figure 6. 

    图 7  弹(塑)性梁板模型

    Figure 7. 

    图 8  临界坡长同滑移面抗剪强度参数之间的关系

    Figure 8. 

    表 1  溃屈破坏典型事件及其相关信息

    Table 1.  Buckling failure events and associated information

    事件名称坡长(m)坡高(m)岩层倾角(°)岩层厚度岩性组合文献来源
    Malvern Hills边坡溃屈22.51545薄层互层泥岩、板岩Seale, 2007
    Quinette矿山溃屈17312044~50薄−中层互层砂岩、页岩Wang B et al., 2004
    Westfield矿山溃屈1609534~40薄层互层泥岩Scoble, 1981
    Lavini di Marco斜坡溃屈45420025~29薄−中层石灰岩、泥岩Tommasi et al., 2009
    新磨滑坡117040043~53中厚层石英砂岩、千枚岩Zhao S Y et al., 2018
    大奔流滑坡146226525~40薄−中层大理岩、泥岩丁戈媛和胡新丽, 2020
    藕塘滑坡180061024~29中厚层砂岩粉砂岩互层肖捷夫, 2021
    木鱼包滑坡150042027中−厚层砂岩、炭质页岩Zhou C et al., 2020
    下载: 导出CSV
  • [1]

    陈 达,许 强,郑 光,王 卓,蒋金晶,刘建强.2021.顺层边坡溃曲变形形成条件及其与层面倾角的关系[J]. 科学技术与工程,21(7):2616-2625. doi: 10.3969/j.issn.1671-1815.2021.07.008

    [2]

    成永刚,王玉峰.2011.层面倾角对顺层岩质滑坡贡献率研究[J]. 岩土力学,32(12):3708-3712. doi: 10.3969/j.issn.1000-7598.2011.12.028

    [3]

    丁戈媛,胡新丽.2020.大奔流顺层岩质滑坡溃屈型破坏力学机制研究[J]. 地质科技通报,39(2):186-190.

    [4]

    杜应琼,任光明,杜 飞,朱少帅,余天彬.2014.顺层斜坡溃屈变形物理模拟及影响因素敏感性分析[J]. 四川理工学院学报(自然科学版),27(6):68-71.

    [5]

    冯 君,周德培,李安洪.2005.顺层岩质边坡开挖稳定性研究[J]. 岩石力学与工程学报,24(9):1474-1478. doi: 10.3321/j.issn:1000-6915.2005.09.003

    [6]

    冯 君,周德培,杨 涛.2010.用弹塑性板理论分析顺层边坡的弯曲失稳[J]. 岩土工程学报,32(8):1184-1188.

    [7]

    龚 涛. 2009. 顺层岩质边坡稳定性研究[D]. 西安理工大学硕士学位论文.

    [8]

    黄润秋.2007.20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,26(3):433-454. doi: 10.3321/j.issn:1000-6915.2007.03.001

    [9]

    黄润秋. 2009. 汶川8. 0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报,28(6):1239-1249.

    [10]

    李安洪,周德培,冯 君.2009.顺层岩质路堑边坡破坏模式及设计对策[J]. 岩石力学与工程学报,28(S1):2915-2921. doi: 10.3321/j.issn:1000-6915.2009.z1.048

    [11]

    李树森,任光明,左三胜.1995.层状结构岩体顺层斜坡失稳机理的力学分析[J]. 地质灾害与环境保护,6(2):24-29.

    [12]

    廖丽萍,朱颖彦,杨志全,邹代华,Muhammad Waseem.2016.中巴喀喇昆仑公路顺层岩质边坡受力分析[J]. 地下空间与工程学报,12(1):243-249.

    [13]

    刘小丽,周德培.2002.用弹性板理论分析顺层岩质边坡的失稳[J]. 岩土力学,23(2):162-165. doi: 10.3969/j.issn.1000-7598.2002.02.006

    [14]

    孙广忠. 1988. 岩体结构力学[M]. 北京:科学出版社.

    [15]

    孙广忠,张文彬.1985.一种常见的岩体结构——板裂结构及其力学模型[J]. 地质科学,20(3):275-282.

    [16]

    汤明高,马 旭,张婷婷,黄润秋,李九乾.2016.顺层斜坡溃屈机制与早期识别研究[J]. 工程地质学报,24(3):442-450.

    [17]

    王佳运,王根龙,石小亚.2019.陕西山阳特大型滑坡视向滑移-溃屈破坏力学分析[J]. 中国地质,46(2):381-388. doi: 10.12029/gc20190214

    [18]

    王秋生,张瑞涛,郑 宏.2022.Malvern Hills边坡溃曲破坏分析及数值流形法模拟[J]. 岩土力学,43(7):1951-1960.

    [19]

    肖捷夫. 2021. 库水涨落和降雨条件下藕塘滑坡变形演化机制及其预测模型研究[D]. 中国地质大学(武汉)博士学位论文.

    [20]

    张勃成,唐辉明,申培武,宁奕冰,夏 丁.2020.基于岩石损伤与水力作用的顺层岩质边坡临界失稳高度研究[J]. 安全与环境工程,27(2):42-49.

    [21]

    张彦君. 2019. 顺层岩质边坡地震稳定性及滑坡运移过程DDA模拟方法[D]. 大连理工大学博士学位论文.

    [22]

    张彦君,年廷凯,王 亮,唐 军.2019.岩质边坡物理模型试验相似材料研究[J]. 西南交通大学学报,54(1):55-60+72.

    [23]

    张倬元,王士天,王兰生,黄润秋,许 强,陶连金. 2016. 工程地质分析原理(第4版)[M]. 北京:地质出版社.

    [24]

    朱晗迓,马美玲,尚岳全.2004.顺倾向层状岩质边坡溃屈破坏分析[J]. 浙江大学学报(工学版),38(9):1144-1149.

    [25]

    Adhikary D P, Mühlhaus H B, Dyskin A V. 2001. A numerical study of flexural buckling of foliated rock slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 25(9): 871-884. doi: 10.1002/nag.157

    [26]

    Bandis S C, Lumsden A C, Barton N R. 1983. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics Mining Sciences & Geomechanics Abstracts, 20: 249-268.

    [27]

    Cavers D S. 1981. Simple methods to analyze buckling of rock slopes[J]. Rock Mechanics, 14: 87-104. doi: 10.1007/BF01239857

    [28]

    Dai Z W, Zhang Y J, Zhang C Y, Luo J H, Yao W. 2022. Interpreting the Influence of Reservoir Water Level Fluctuation on the Seepage and Stability of an Ancient Landslide in the Three Gorges Reservoir Area: A Case Study of the Outang Landslide[J]. Geotechnical and Geological Engineering, 40(9): 4551-4561. doi: 10.1007/s10706-022-02170-1

    [29]

    Dai Z W, Zhang Y J, Zhang C Y, Fu X L, Zhang P, Ye R Q. 2024. A photographic method to identify reservoir geohazards induced by rock mass deterioration of hydro-fluctuation belt[J]. Frontiers in Earth Science, 12: 1365272. doi: 10.3389/feart.2024.1365272

    [30]

    Eberhardt E, Stead D. 1998. Mechanisms of slope instability in thinly bedded surface mine slopes[C]. //Moore D P, Hungr O, Balkema A A, eds. Proceedings, 8th Congress of the International Association for Engineering Geology and the Environment, Vancouver.

    [31]

    Fan X M, Xu Q, Scaringi G, Dai L X, Li W L, Dond X J, Zhu X, Pei X J, Dai K R, Havenith H B. 2017. Failure mechanism and kinematics of the deadly june 24th 2017 Xinmo landslide, maoxian, sichuan, China[J]. Landslides, 14(3): 2129-2146.

    [32]

    Garzon S E R. 2016. Analytical solution for assessing continuum buckling in sedimentary rock slopes based on the tangent-modulus theory[J]. International Journal of Rock Mechanics and Mining Science, 90: 53-61. doi: 10.1016/j.ijrmms.2016.10.002

    [33]

    Ghasemi M, Corkum A G. 2020. A three hinge buckling laboratory test[J]. Rock Mechanics and Rock Engineering, 53: 4077-4090. doi: 10.1007/s00603-020-02143-x

    [34]

    Ghasemi M, Corkum A G. 2022. Experiment and numerical study on three hinge buckling[J]. Rock Mechanics and Rock Engineering, 56: 2049-2063.

    [35]

    Goodman R E. 1980. Introduction to Rock Mechanics[M]. New York: John Wiley and Sons.

    [36]

    Goodman R E, Taylor R L, Brekke T L. 1968. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,94(3): 637-659.

    [37]

    Hoek E, Bray J. 1977. Rock Slope Engineering. revised second edition[M]. London: Publication of Institution of Mining and Metallurgy.

    [38]

    Jin L L, Ju G H, Chen Z F, Xiao Q F, Fu W X, Ye F, Wei Y F. 2024. An analytical solution to predict slip-buckling failure of bedding rock slopes under the influence of top loading and earthquakes: Case studies of Hejia landslide and Tangjiashan landslide[J]. Landslides, 21: 152-169.

    [39]

    Khosravi M H, Tang L, Pipatpongsa T, Takemura J, Doncommul P. 2012. Performance of counterweight balance on stability of undercut slope evaluated by physical modeling[J]. International Journal of Geotechnical Engineering, 6(2): 193-205. doi: 10.3328/IJGE.2012.06.02.193-205

    [40]

    Kuttėr H K. 1972. Mechanisms of Slope Failure Other Than Pure Sliding[M]. //Müller L, eds. Rock Mechanics. International Centre for Mechanical Sciences. Springer, Vienna.

    [41]

    Li B, Huang D, Zhu Y Z. 2022. A complex slide-buckling-toppling failure of under-dip soft rock slopes[J]. European Journal of Environmental and Civil Engineering, 26(9): 4146-4169. doi: 10.1080/19648189.2020.1839791

    [42]

    Li Y Y, Feng X Y, Yao A J, Zhang Z H, Li K, Wang Q S, Song S Y. 2022. Progressive evolution and failure behavior of a Holocene river-damming landslide in the SE Tibetan plateau, China[J]. Landslides, 19(5): 1069-1086. doi: 10.1007/s10346-021-01835-x

    [43]

    Liu H Y, Wang G H, Huang F. 2016. Methods to analyze flexural buckling of the consequent slabbed rock slope under top loading[J]. Mathematical Problem in Engineering, 3402547.

    [44]

    Lo C M, Weng M C. 2017. Identification of deformation and failure characteristics in cataclinal slopes using physical modeling[J]. Landslides, 14(2): 499-515. doi: 10.1007/s10346-016-0735-1

    [45]

    Nemcok A, Pasek J, Rybar J. 1972. Classification of landslides and other mass movements[J]. Rock Mechanics, 4: 71-78. doi: 10.1007/BF01239137

    [46]

    Pant S R, Adhikary D P. 1999. Implicit and explicit modelling of flexural buckling of foliated rock slopes[J]. Rock Mechanics and Rock Engineering, 32(2): 157-164. doi: 10.1007/s006030050029

    [47]

    Pei Z W, Zhang Y J, Nian T K, Song X L, Zhao W. 2023a. Performance investigation of micropile groups in stabilizing unstable talus slopes via centrifuge model tests[J]. Canadian Geotechnical Journal, 60(3): 351-365. doi: 10.1139/cgj-2021-0681

    [48]

    Pei Z W, Zhang Y J, Nian T K, Xiao S G, Liu H S. 2023b. Cross-Scale Analysis on the Working Performance of Micropile Group and Talus Slope System[J]. Sustainability, 15: 8154. doi: 10.3390/su15108154

    [49]

    Pereira L C, Lana M S. 2013. Stress-strain analysis of buckling failure in phyllite slopes[J]. Geotechnical and Geological Engineering, 31(1): 297-314. doi: 10.1007/s10706-012-9556-8

    [50]

    Qi S W, Lan H X, Dong J Y. 2015. An analytical solution to slip buckling slope failure triggered by earthquake[J]. Engineering Geology, 194: 4-11. doi: 10.1016/j.enggeo.2014.06.004

    [51]

    Qin S, Jiao J J, Wang S. 2001. A cusp catastrophe model of instability of slip-buckling slope[J]. Rock Mechanics and Rock Engineering, 34(2): 119-134. doi: 10.1007/s006030170018

    [52]

    Ridl R N, Bell D H, Villenueve M C, Macfarlane D F. 2021. A simple method to model buckling slope instability using continuum numerical models[M]. //The Evolution of Geotech-25 Years of Innovation. CRC Press: 443-449.

    [53]

    Scoble M J. 1981. Studies of Ground Deformation in British Surface Coal Mines [D]. Nottingham: University of Nottingham, Mining Engineering Department.

    [54]

    Seale J. 2007. An Engineering Geological Investigation of Footwall Toe-Buckle Instability at the Malvern Hills Opencast Coal Mine[D]. Christchurch, New Zealand: University of Canterbury.

    [55]

    Stead D, Eberhardt E. 1997. Developments in the analysis of footwall slopes in surface coal mining[J]. Engineering Geology, 46(1): 41-61. doi: 10.1016/S0013-7952(96)00084-1

    [56]

    Shou K J, Wang C F. 2003. Analyis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan[J]. Engineering Geology, 68(3-4): 237-250. doi: 10.1016/S0013-7952(02)00230-2

    [57]

    Silva C, Lana M S. 2014. Numerical modeling of buckling failure in a mine slope[J]. Revista Escola de Minas, 67(1): 81-86. doi: 10.1590/S0370-44672014000100012

    [58]

    Tommasi P, Campedel P, Consorti C, Ribacchi R. 2008. A discontinuous approach to the numerical modelling of rock avalanches[J]. Rock Mechanics and Rock Engineering, 41(1): 37-58. doi: 10.1007/s00603-007-0133-z

    [59]

    Tommasi P, Verrucci L, Campedel P, Veronese L, Pettinelli E, Ribacchi R. 2009. Buckling of high natural slopes: the case of lavini di marco (trento-Italy)[J]. Engineering Geology, 109: 93-108. doi: 10.1016/j.enggeo.2009.02.002

    [60]

    Wang B, Cavers D S, Wong B C. 2004. Surface buckling failure study and support design at the Quintette coal mine, Canada[M]. // Lacerda W, et al. , eds. Landslides: Evaluation and Stabilization. London: CRC Press: 475-480.

    [61]

    Wang Q S, Zhang R T, Zheng H, Zhou P Z. 2023. An analytical solution of critical sliding displacement for the flexural buckling failure of layered rock slopes[J]. International Journal of Rock Mechanics and Mining Sciences, 169: 105450. doi: 10.1016/j.ijrmms.2023.105450

    [62]

    Weng M C, Lo C M, Wu C H, Chuang T F. 2015. Gravitational deformation mechanisms of slate slopes revealed by model tests and discrete element analysis[J]. Engineering Geology, 189: 116-132. doi: 10.1016/j.enggeo.2015.01.024

    [63]

    Weng M C, Chen T C, Tsai S J. 2017. Modeling scale effects on consequent slope deformation by centrifuge model tests and the discrete element method[J]. Landslides, 14(3): 981-993. doi: 10.1007/s10346-016-0774-7

    [64]

    Zhang Q, Hu J, Du Y L, Gao Y, Li J Z. 2021. A laboratory and field-monitoring experiment on the ability of anti-slide piles to prevent buckling failures in bedding slopes[J]. Environmental Earth Sciences, 80: 44. doi: 10.1007/s12665-020-09288-6

    [65]

    Zhang S C, Fan Q Y, Niu Y F, Qiu S C, Si J Z, Feng Y H, Zhang S Q, Song Z W, Li Z H. 2020. Two-dimensional deformation monitoring for spatiotemporal evolution and failure mode of Lashagou landslide group, Northwest China[J]. Landslides, 20: 447-459.

    [66]

    Zhang Y J, Nian T K, Guo X S, Chen G Q, Zheng L. 2019. Modelling the flexural buckling failure of stratified rock slopes based on the multilayer beam model[J]. Journal of Mountain Sciences, 16(5): 1170-1183. doi: 10.1007/s11629-018-5007-1

    [67]

    Zhao S Y, Chigira M, Wu X Y. 2018. Buckling deformations at the 2017 Xinmo landslide site and nearby slopes, Maoxian, Sichuan, China[J]. Engineering Geology, 246: 187-197. doi: 10.1016/j.enggeo.2018.09.033

    [68]

    Zhou C, Cao Y, Yin K L, Wang Y, Shi X G, Catani F, Ahmed B. 2020. Landslide characterization applying Sentinel-1 images and Insar technique: the Muyubao Landslide in the Three Gorges Reservoir Area, China[J]. Remote Sensing, 12: 3385. doi: 10.3390/rs12203385

  • 加载中

(8)

(1)

计量
  • 文章访问数:  65
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2024-10-31
修回日期:  2024-12-12
刊出日期:  2025-03-20

目录