Mineral Chemical Characteristics and Geodynamic Significance of Olivine Gabbro from the Zhijiaqiao Area, Yugan County, Jiangxi Province
-
摘要:
橄榄辉长岩起源于岩石圈地幔,其中的造岩矿物的结构和成分特征与岩石成因密切相关,可以反映岩浆源区特征、结晶的物理化学条件以及地球动力学背景。本文对产于华夏地块的江西余干支家桥橄榄辉长岩开展了岩相学和矿物化学分析以探讨其形成的背景。该橄榄辉长岩的造岩矿物由单斜辉石、斜长石、橄榄石及少量角闪石和金云母等组成。橄榄石为他形粒状,边缘发育蛇纹石化,Fo=80.68~82.20,属贵橄榄石,CaO含量低于0.1 wt.%,指示其为地幔捕虏晶;单斜辉石为透辉石和普通辉石,Mg#=82.52~85.95,矿物成分计算表明岩体的母岩浆为钙碱性玄武质岩浆,结晶温度为
1173 ~1193 ℃,结晶压力为0.25~0.39 GPa。橄榄辉长岩中富含含水矿物及单斜辉石结晶时岩浆含水量(2.1%~2.7%)指示其母岩浆具有富水的特征,可能其岩浆源区受到过俯冲流体的交代改造。结合区域地质背景认为支家桥地区橄榄辉长岩可能是受俯冲流体交代过的岩石圈地幔在新生代伸展背景下发生减压熔融,形成橄榄辉长岩的母岩浆,母岩浆上升侵位于中下地壳的产物。Abstract:Olivine gabbro originates from the mantle lithosphere, with the structural and compositional characteristics of its rock-forming minerals closely related to its petrogenesis, reflecting the characteristics of the magma source region, the physicochemical conditions of crystallization, and the geodynamic background. This paper conducts the petrographic and mineral chemical analyses on the olivine gabbro from the Zhijiaqiao area in the Cathaysia Block, to explore its formation background. The rock-forming minerals of this olivine Gabbro consist of clinopyroxene, plagioclase, olivine, and a small amount of hornblende and phlogopite. Olivine is xenomorphic granular and developing serpentinization alteration edge. With the Fo values of 80.68~82.20, it belongs to the chrysolite, CaO content is less than 0.1 wt.%, indicated as mantle xenocrysts. The clinopyroxene is composed of diopside and augite. with Mg#=82.52~85.95. Mineral composition calculations indicate that the parent magma is calc-alkaline basaltic magma, with a crystallization temperature range of
1173 ~1193 ℃ and a crystallization pressure of 0.25~0.39 GPa. The richness in hydrous minerals and the water content (2.1%~2.7%) of the clinopyroxene in the olivine gabbro indicate that its parent magma is water-rich, possibly due to metasomatism by subduction-related fluids in the magma source region. Combined with the regional geological background, it is believed that the olivine gabbro in the Zhijiaqiao area may have originated from lithospheric mantle metasomatized by subduction fluids. Under the extensional tectonic setting of the Cenozoic, this mantle has undergone decompression melting, forming the parent magma of the olivine gabbro, which ascended and intruded into the middle-lower crust.-
Key words:
- clinopyroxene /
- olivine /
- moisture capacity /
- geodynamic significance /
- the Zhijiaqiao area
-
-
表 1 支家桥橄榄辉长岩中橄榄石化学组成电子探针分析结果(wt.%)及相关参数
Table 1. Electron microprobe analysis results (wt.%) and related parameters of olivine chemical composition in Zhijiaqiao olivine gabbro
ZJQ16-2-4 ZJQ16-2-7 ZJQ16-2-9 ZJQ16-3-11 ZJQ16-3-15 ZJQ16-3-22 ZJQ16-3-23 ZJQ16-3-24 ZJQ16-3-25 ZJQ16-3-27 SiO2 38.64 38.71 38.26 38.73 38.61 38.68 38.78 38.54 38.81 38.37 TiO2 0 0 0 0.04 0 0.03 0 0 0 0.01 Al2O3 0.03 0.04 0.01 0.01 0.03 0 0.01 0 0.02 0.01 Cr2O3 0.04 0 0.02 0 0.02 0 0.02 0 0 0.02 FeO 17.29 17.64 17.26 17.92 17.98 17.31 17.09 17.04 16.55 17.29 MnO 0.25 0.24 0.24 0.24 0.29 0.3 0.19 0.27 0.25 0.3 MgO 42.3 42.49 42.29 42.07 42.12 42.49 42.82 42.49 42.87 42.69 CaO 0 0 0.03 0.03 0.01 0.01 0.02 0.02 0.02 0.01 Na2O 0.02 0 0.01 0 0 0.02 0 0.01 0.01 0 K2O 0.02 0 0 0.02 0 0 0.01 0.01 0 0 NiO 0.01 0.09 0.01 0.08 0.13 0.06 0.07 0.09 0.06 0.07 Total 98.58 99.21 98.11 99.14 99.2 98.89 99.01 98.47 98.59 98.77 Si 1.99 1.99 1.98 1.99 1.99 1.99 1.99 1.99 1.99 1.98 Ti 0 0 0 0 0 0 0 0 0 0 Al 0 0 0 0 0 0 0 0 0 0 Cr 0 0 0 0 0 0 0 0 0 0 Fe 0.37 0.38 0.37 0.39 0.39 0.37 0.37 0.37 0.36 0.37 Mn 0.01 0.01 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 Mg 1.63 1.63 1.63 1.61 1.62 1.63 1.64 1.64 1.64 1.64 Ca 0 0 0 0 0 0 0 0 0 0 Na 0 0 0 0 0 0 0 0 0 0 K 0 0 0 0 0 0 0 0 0 0 Fo 81.35 81.11 81.37 80.72 80.68 81.4 81.7 81.63 82.2 81.48 表 2 支家桥橄榄辉长岩中单斜辉石化学组成电子探针分析结果(wt.%)及相关参数
Table 2. Electron microprobe analysis results of chemical composition (wt.%) and related parameters of clinopyroxene in olivine gabbro of Zhijiaqiao
ZJQ16-2-1 ZJQ16-2-2 ZJQ16-2-3 ZJQ16-2-4 ZJQ16-2-5 ZJQ16-2-6 ZJQ16-2-7 ZJQ16-2-8 ZJQ16-2-9 ZJQ16-2-10 SiO2 51.78 51.13 52.49 51.81 52.43 53.07 51.86 51.89 51.97 52.3 TiO2 0.53 0.55 0.4 0.56 0.48 0.26 0.55 0.51 0.55 0.41 Al2O3 3.86 4.61 2.96 3.93 3.22 2.49 3.65 3.85 3.79 3.03 Cr2O3 0.14 0.11 0.03 0.21 0.23 0.09 0.09 0.03 0.18 0.11 FeO 5.24 5.69 4.83 5.8 5.33 5.27 5.72 5.47 6.99 5.28 MnO 0.15 0.18 0.11 0.16 0.16 0.17 0.2 0.16 0.2 0.17 MgO 15.55 15.27 15.48 15.63 15.54 16.29 15.97 15.2 17.24 15.57 CaO 22.36 21.92 23.37 21.4 22.51 22.34 21.71 22.38 18.62 22.9 Na2O 0.28 0.27 0.15 0.24 0.25 0.24 0.25 0.28 0.22 0.2 K2O 0 0.01 0 0 0 0 0.02 0 0.02 0.01 Total 99.9 99.75 99.81 99.74 100.15 100.22 100.01 99.77 99.82 100 Si 1.9 1.88 1.93 1.9 1.93 1.95 1.91 1.91 1.91 1.92 Aliv 0.1 0.12 0.07 0.1 0.07 0.05 0.09 0.09 0.09 0.08 Alvi 0.07 0.08 0.06 0.07 0.07 0.06 0.06 0.07 0.07 0.05 Ti 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 Cr 0 0 0 0.01 0.01 0 0 0 0.01 0 Fe3+ 0.02 0 0 0 0.03 0.07 0.03 0 0.03 0.01 Fe2+ 0.14 0.17 0.15 0.18 0.13 0.09 0.14 0.17 0.19 0.15 Mn 0 0.01 0 0 0 0.01 0.01 0.01 0.01 0.01 Mg 0.85 0.84 0.85 0.86 0.85 0.89 0.87 0.83 0.94 0.85 Ca 0.88 0.86 0.92 0.84 0.89 0.88 0.85 0.88 0.73 0.9 Na 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 K 0 0 0 0 0 0 0 0 0 0 Wo 46.39 45.92 47.93 44.78 46.5 45.37 44.73 46.7 38.62 46.91 En 44.89 44.5 44.18 45.5 44.66 46.02 45.78 44.14 49.76 44.37 Fs 8.72 9.58 7.9 9.72 8.84 8.61 9.5 9.17 11.63 8.71 Mg# 85.83 84.84 85.23 82.52 85.83 84.84 85.23 82.52 84.04 85.95 表 3 支家桥橄榄辉长岩中单斜辉石结晶时温度、压力
Table 3. Temperature and pressure of clinopyroxene crystallization in Zhijiaqiao olivine gabbro
样号 T(℃) P(GPa) H2O(wt.%) H(km) ZJQ16-2-1 1183.2 0.30 2.6 10 ZJQ16-2-2 1178.1 0.33 2.5 11 ZJQ16-2-4 1181.2 0.31 2.1 10 ZJQ16-2-5 1179.6 0.25 2.4 8 ZJQ16-2-6 1193.5 0.30 2.6 10 ZJQ16-2-7 1173.1 0.25 2.3 8 ZJQ16-2-8 1184.1 0.33 2.7 11 ZJQ16-2-9 1187.9 0.39 2.7 13 注:假定1 GPa对应33 km深度;温压计算公式据Wang X D et al.(2021). -
[1] 蔡晓芸,徐 扬,杨振宁,刘 雨,李定华,陈 宇.2024.扬子北缘大洪山地区新元古代辉长辉绿岩中单斜辉石成因及其构造意义[J]. 岩石学报,40(11):3552-3567.
[2] 陈 可,邵拥军,刘忠法,张俊柯,李永顺,陈雨莹.2024.岩浆因素对中国东部铜陵矿集区差异性矿化的控制作用:来自角闪石、斜长石矿物学证据[J]. 地学前缘,31(3):199-217.
[3] 段雪鹏. 2019. 东昆仑夏日哈木含铜镍矿镁铁-超镁铁岩成因矿物学研究[D]. 中国地质科学院博士学位论文.
[4] 高文彬. 2021. 甘肃柳园地区西南山岩体地质特征及岩石地球化学研究[D]. 长安大学硕士学位论文.
[5] 胡开明.2001.江绍断裂带的构造演化初探[J]. 浙江地质,(2):1-11.
[6] 姜常义,凌锦兰,周 伟,杜 玮,王子玺,范亚洲,宋艳芳,宋忠宝.2015.东昆仑夏日哈木镁铁质-超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报,31(4):1117-1136.
[7] 江西省地质调查研究院. 2009. 江西1:5万桃墅店、大江村、余干县、古楼埠、江埠、社赓幅区域地质调查报告[R].
[8] 孔会磊,栗亚芝,李金超,贾群子,国显正,王 宇,姚学钢.2021.东昆仑希望沟橄榄辉长岩的岩石成因:地球化学、锆石U-Pb年龄与Hf同位素制约[J]. 中国地质,48(1):173-188.
[9] 李建华,董树文,赵国春,张岳桥,辛宇佳,王金铭,卢运可.2024.华南晚中生代大陆变形、深部过程及动力学[J]. 地质学报,98(3):829-861.
[10] 李兆鼐,权 恒,李之彤. 2003. 中国东部中新生代火成岩及其深部过程[M]. 北京:地质出版社.
[11] 刘 凯,厉子龙,徐维光,叶海敏,赵希林,胡逸州,周 静,毛建仁.2016.华南中生代岩浆岩时空分布和迁移与古太平洋板块俯冲过程[J]. 矿物岩石地球化学通报,35(6):1141-1155.
[12] 刘 清,郭国林,张胜了,巫建华,严兆彬,陶继华,王凯兴.2023.浙江江山上墅组玄武粗安岩中单斜辉石环带特征及指示意义[J]. 地质学报,97(5):1447-1462.
[13] 刘振轩,鄢全树,刘焱光,杨 刚,石学法.2023.九州-帕劳脊南段基底玄武岩的单斜辉石矿物化学及成因意义[J]. 海洋学报,45(6):75-92.
[14] 马博骋,钱壮志,Keays Reid,徐 刚,段 俊,焦建刚,高文彬,陈阳阳.2023.甘-新北山地区二叠纪镁铁-超镁铁质岩体造岩矿物化学特征及其岩石学指示[J]. 岩石学报,39(4):1095-1116. doi: 10.18654/1000-0569/2023.04.10
[15] 牛晓露,陈 斌,马 旭.2009.河北矾山杂岩体中单斜辉石的研究[J]. 岩石学报,25(2):359-373.
[16] 秦社彩,范蔚茗,郭 锋.2019.江绍断裂带晚中生代镁铁质火山岩成因及其深部过程意义[J]. 岩石学报,35(6):1892-1906.
[17] 邱家骧,廖群安.1987.中国东部新生代玄武岩中单斜辉石巨晶的主要特征及成因信息[J]. 岩石矿物学杂志,6(1):56-64.
[18] 舒良树.2012.华南构造演化的基本特征[J]. 地质通报,31(7):1035-1053.
[19] 孙 涛.2006.新编华南花岗岩分布图及其说明[J]. 地质通报,25(3):332-335.
[20] 王锦团,熊小林,陈伊翔,黄芳芳.2020.俯冲带氧逸度研究:进展和展望[J]. 中国科学:地球科学,63(12):1952-1968.
[21] 王新毓,索艳慧,李三忠,曹现志,李玺瑶,周 洁,王鹏程,金 宠.2020.华南东部陆缘新生代隆升历史及其动力学机制[J]. 岩石学报,36(6):1803-1820.
[22] 吴建亮,尹显科,王 波,刘 文,雷传扬,李 威,张 伟.2019.藏北阿翁错地区中基性脉岩年代学、地球化学特征及其板内伸展构造作用[J]. 中国地质,46(6):1356-1371. doi: 10.12029/gc20190608
[23] 夏林圻,李向民,马中平,徐学义,夏祖春.2010.青藏高原新生代火山作用与构造演化[J]. 西北地质,43(1):1-25.
[24] 薛胜超,秦克章,唐冬梅,毛亚晶,姚卓森. 2015 东疆二叠纪镁铁-超镁铁岩体中辉石的成分特征及其对成岩和Ni-Cu成矿的指示[J]. 岩石学报,31(8):2175-2192.
[25] 张 超,马 强,郑建平,洪路兵,庞崇进,王翠翠,毋雅京,朱律运.2022.辽东中-新生代玄武岩的橄榄石斑晶和捕虏晶氧同位素组成及其岩石圈地幔演化启示[J]. 地质学报,96(12):4211-4223.
[26] 张柳毅,李 霓,Dejan Prelevic.2016.橄榄石微量元素原位分析的现状及其应用[J]. 岩石学报,32(6):1877-1890.
[27] 张少兵,吴 鹏,郑永飞.2019.罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录[J]. 地球科学,44(12):4157-4166.
[28] 张胜了,郭国林,巫建华,武 勇,刘 清,严文亚,李昌龙,姜智东,尊珠桑姆.2024.浙西里垄正长岩SIMS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地质论评,70(2):476-498.
[29] 张晓晖,翟明国.2010.华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应[J]. 岩石学报,26(5):1329-1341.
[30] 张岳桥,董树文,李建华,崔建军,施 炜,苏金宝,李 勇.2012.华南中生代大地构造研究新进展[J]. 地球学报,33(3):257-279. doi: 10.3975/cagsb.2012.03.01
[31] 左祖发,徐 喆,刘 杨,黄志忠,刘邦秀,马振兴,徐祖丰.2017.江西余干支家桥地区镁铁质岩体的LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 东华理工大学学报(自然科学版),40(4):306-313.
[32] Aoki K I. 1964. Clinopyroxenes from alkaline rocks of Japan[J]. American Mineralogist, 49(9-10): 1199-1223.
[33] Aparicio A. 2010. Relationship between clinopyroxene composition and the formation environment of volcanic host rocks[J]. The IUP Journal of Earth Sciences, 4(3): 34-44.
[34] Ballhaus C, Berry R F, Green D H. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle[J]. Contributions to Mineralogy and Petrology, 107(1): 27-40. doi: 10.1007/BF00311183
[35] Barnes S J, Roeder P L. 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks[J]. Journal of Petrology, 42: 2279-2302. doi: 10.1093/petrology/42.12.2279
[36] Cameron M, Papike J J. 1981. Structural and chemical variations in pyroxenes[J]. American Mineralogist, 66(1-2): 1-50.
[37] De H J, Gall L, Cornell D H. 2010. Trace-element geochemistry of mantel olivine and application to mantel petrogenesis and geothermobarometry[J]. Chemical Geology, 270(1-4): 196-215. doi: 10.1016/j.chemgeo.2009.11.017
[38] Foley S F, Prelevic D, Rehfeldt T, Jacob D E. 2013. Minor and trace elements in olivines as probes into early igneous and mantle melting processes[J]. Earth and Planetary Science Letters, 363: 189-191.
[39] Jayasuriya K D, O’Neill H S C, Berry A J, Campbell S J. 2004. A Mössbauer study of the oxidation state of Fe in silicate melts[J]. American Mineralogist, 89(11-12): 1597-1609. doi: 10.2138/am-2004-11-1203
[40] Kamenetsky V S, Elburg M, Arculus R, Thomas R. 2006. Magmatic origin of low-Ca olivine in subduction-related magmas: Co-existence of contrasting magmas[J]. Chemical Geology, 233(3-4): 346-357. doi: 10.1016/j.chemgeo.2006.03.010
[41] Kuritani T, Yoshida T, Kimura J I, Hirahara Y, Takahashi T. 2014. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan Arc: Implications for differentiation mechanism of frontal-arc basalt magams[J]. Mineralogy and Petrology, 108(1): 1-11. doi: 10.1007/s00710-013-0278-2
[42] Kushiro I. 1960. Si-Al relation in clinopyroxenes from igneous rocks[J]. American Journal of Science, 258(8): 548-554. doi: 10.2475/ajs.258.8.548
[43] Le Bas M J. 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage[J]. American Journal of Science, 260(4): 267-288. doi: 10.2475/ajs.260.4.267
[44] Leterrier J, Maury R C, Thonon P, Girard D, Marchal M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinity of paleovolcanic series[J]. Earth and Planetary Science Letters, 59(1): 139-154. doi: 10.1016/0012-821X(82)90122-4
[45] Li C S, Thakurta J, Ripley E M. 2012. Low-Ca contents and kink-banded textures are not unique to mantle olivine: Evidence from the Duke Island complex, Alaska[J]. Mineralogy and Petrology, 104(3-4): 147-153. doi: 10.1007/s00710-011-0188-0
[46] Li X H, Wang X C, Zhou K F, Qiu J S, Zhao X X. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174: 117-128. doi: 10.1016/j.precamres.2009.07.004
[47] Long X Y, Tang J, Xu W L, Sun C Y, Luan J P, Xiong S and Zhang X M. 2023. Trace element and Nd isotope analyses of apatite in granitoids and metamorphosed granitoids from the eastern Central Asian Orogenic Belt: Implications for petrogenesis and post-magmatic alteration[J]. Geoscience Frontiers, 14: 101517. doi: 10.1016/j.gsf.2022.101517
[48] Louks R R. 1990. Discrimination of ophiolitic from non-ophiolitic ultramafic-mafic alkalochlothons in orogenic belts by the Al/Ti ratio in clinopyroxene[J]. Geology, 18(4): 346-349. doi: 10.1130/0091-7613(1990)018<0346:DOOFNU>2.3.CO;2
[49] Luo B J, Wang Z C, Song J L, Qian Y Q, He Q, Li Y H, James W, Frédéric M, Xiao L, Harry Becker, Huang B X, Ruan B, Hu Y X, Pan F B, Xu C, Liu W L, Zong K Q, Zhao J W, Zhang W, Hu Z C, She Z B, Wu X, Zhang H F. 2023. The magmatic architecture and evolution of the Chang’e-5 lunar basalts[J]. Nature Geoscience, 16: 301-308. doi: 10.1038/s41561-023-01146-x
[50] Meng L F, Li Z X, Chen H L, Li X H, Wang X C. 2012. Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model[J]. Lithos, 132: 127-140.
[51] Morimoto N, Fabries J, Ferguson A K, Ginzburg I V, Ross M, Seifert F A, Zussman K, Aoko, Gottardi, G. 1988. Nomenclature of pyroxenes[J]. Mineralogical Magazine, 52(367): 535-550. doi: 10.1180/minmag.1988.052.367.15
[52] Neave D A, Putirka K D. 2017. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones[J]. American Mineralogist, 102(4): 777-794. doi: 10.2138/am-2017-5968
[53] Neave D A, Namur O, Shorttle O, Holtz F. 2019a. Magmatic evolution biases basaltic records of mantle chemistry towards melts from recycled sources[J]. Earth and Planetary Science Letters, 520: 199-211. doi: 10.1016/j.jpgl.2019.06.003
[54] Nisbet E G, Pearce J A. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings[J]. Contributions to Mineralogy and Petrology, 63(2): 149-160. doi: 10.1007/BF00398776
[55] Perinelli C, Mollo S, Gaeta M, Cristofaro S P D, Palladino D M, Armienti G, Scarlato, Putirka K D. 2016. An improved clinopyroxene-based hygrometer for Etnean magmas and implications for eruption trig gering mechanisms[J]. American Mineralogist, 101(12): 2774-2777. doi: 10.2138/am-2016-5916
[56] Putirka K D. 2008. Thermometers and barometers for volcanic systems[J]. Reviews in Mineralogy and Geochemistry, 69(1): 61-120. doi: 10.2138/rmg.2008.69.3
[57] Putirka K. 1999. Clinopyroxene + liquid equilibria to 100kbar and 2450K[J]. Contributions to Mineralogy and Petrology, 135(2-3): 151-163. doi: 10.1007/s004100050503
[58] Saal A E, Hauri E H., Langmuir C H, Perfit M R. 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle[J]. Nature, 419(6906): 451-455. doi: 10.1038/nature01073
[59] Seyler M, Bonatti E. 1994. Na, AlⅣ and AlⅥ in clinopyroxenes of subcontinental and suboceanic ridge peridotites: A clue to different melting processes in the mantle?[J]. Earth and Planetary Science Letters, 122(3-4): 281-289. doi: 10.1016/0012-821X(94)90002-7
[60] Shu L S, Yao J L, Wang B, Michel F, Jacques C, Chen Y. 2021. Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block[J]. Earth-Science Reviews, 216: 103596. doi: 10.1016/j.earscirev.2021.103596
[61] Soesoo A. 1997. A multivariate statistical analysis of clinopyroxene composition: empirical coordinates for the crystallisation PT estimations[J]. GFF, 119(1): 55-60. doi: 10.1080/11035899709546454
[62] Streck M J. 2008. Mineral textures and zoning as evidence for open system processes[J]. Reviews in Mineralogy and Geochemistry, 69(1): 595-622. doi: 10.2138/rmg.2008.69.15
[63] Wallace, P. J. 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data[J]. Journal of Volcanology and Geothermal Research, 140(1-3): 217-240. doi: 10.1016/j.jvolgeores.2004.07.023
[64] Wang X D, Hou T, Wang M, Zhang C, Zhang Z C, Pan R, Marxer F, Zhang H L. 2021. A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems[J]. European Journal of Mineralogy, 33(5): 621-637. doi: 10.5194/ejm-33-621-2021
[65] Wang X L, Zhou J C, Griffin W L, Wang R C, Qiu J S, O'Reilly S Y, Xu X, Liu X M, Zhang G L. 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 159(1-2): 117-131. doi: 10.1016/j.precamres.2007.06.005
[66] Wass S Y. 1979. Multiple origins of clinopyroxenes in alkali basaltic rocks[J]. Lithos, 12(2): 115-132. doi: 10.1016/0024-4937(79)90043-4
[67] Xu Z, Zheng Y F, Zhao Z F, Zhao Z F, Gong B. 2014. The hydrous properties of subcontinental lithospheric mantle: Constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China[J]. Geochimica et Cosmochimica Acta, 143: 285-302. doi: 10.1016/j.gca.2013.12.025
[68] Yu K Z, Liu Y S, Foley Stephen F, Hu Z C, Zong K Q, Chen C F and Shu C T. 2021. Reconstruction of primary alkaline magma composition from mineral archives: Decipher mantle metasomatism by carbonated sediment[J]. Chemical Geology, 577: 120279. doi: 10.1016/j.chemgeo.2021.120279
[69] Zhao G C, Cawood P A. 2012. Precambrian geology of China[J]. Precambrian Research, 222: 13-54.
[70] Zhao G C. 2015. Jiangnan Orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 27(3): 1173-1180.
-