热液条件下Au络合物迁移行为的热力学模拟计算

马璐瑶, 马勋娇. 2025. 热液条件下Au络合物迁移行为的热力学模拟计算. 华南地质, 41(1): 75-85. doi: 10.3969/j.issn.2097-0013.2025.01.006
引用本文: 马璐瑶, 马勋娇. 2025. 热液条件下Au络合物迁移行为的热力学模拟计算. 华南地质, 41(1): 75-85. doi: 10.3969/j.issn.2097-0013.2025.01.006
MA Lu-Yao, MA Xun-Jiao. 2025. Thermodynamic Simulation of Migration Behavior of Au Complex Under Hydrothermal Conditions. South China Geology, 41(1): 75-85. doi: 10.3969/j.issn.2097-0013.2025.01.006
Citation: MA Lu-Yao, MA Xun-Jiao. 2025. Thermodynamic Simulation of Migration Behavior of Au Complex Under Hydrothermal Conditions. South China Geology, 41(1): 75-85. doi: 10.3969/j.issn.2097-0013.2025.01.006

热液条件下Au络合物迁移行为的热力学模拟计算

  • 基金项目: 东华理工大学研究生创新基金(DHYC-202407)
详细信息
    作者简介: 马璐瑶(1999—),女,硕士研究生,主要从事热液地球化学研究,E-mail:mly000602@163.com
  • 中图分类号: P595;P618.51

Thermodynamic Simulation of Migration Behavior of Au Complex Under Hydrothermal Conditions

  • 金矿床的形成主要依赖于成矿热液将地下深部金元素运移至地壳浅部并促使其沉淀、富集,该过程在很大程度上取决于金络合物在热液环境中的稳定性。深入探究富金流体形成与迁移的具体条件,关键在于明晰影响热液中金络合物稳定性的物理化学因素。本文以热力学理论为基础,对地球化学模拟软件GEM-Selektor的数据库进行补充后,按照自然热液环境设计了不同的流体体系,并对其进行金的溶解度计算。研究结果表明,热液流体若呈现高温状态,同时具有较高的氧逸度,并富含HS和S3等还原性硫配体时,将更有助于金的溶解。Au-HS络合物相较于Au-Cl络合物展现出更高的稳定性,尤其是Au(HS)S3的存在,显著提升了成矿流体在演化阶段萃取金的能力及运输效率。

  • 加载中
  • 图 1  金络合物浓度(a)和硫物种浓度(b)随温度的变化情况

    Figure 1. 

    图 2  金络合物的浓度随pH (a)和氧逸度(b)的变化情况

    Figure 2. 

    图 3  金络合物的浓度随盐度(a)和总硫含量(b)的变化情况

    Figure 3. 

    图 4  与三种主要类型金矿床有关的热液体系达到平衡时金络合物的浓度

    Figure 4. 

    表 1  软件及数据库来源

    Table 1.  Software and database sources

    软件及数据库 来源
    GEM-Selektor http://gems.web.psi.ch/
    SUPCRT92 http://pdukonline.co.uk/download
    SLOP98 database http://geopig.asu.edu/supcrt_data.html
    下载: 导出CSV

    表 2  金的络合物在不同温度下平衡时的浓度(mol/L)

    Table 2.  Concentration (mol/L) of gold complexes in equilibrium at different temperatures

    温度(℃)200300400500600
    Au(HS)H2S7.10×10−133.98×10−175.64×10−151.15×10−108.83×10−4
    Au(HS)S38.75×10−263.23×10−162.37×10−87.08×10−41.44×10−1
    Au(HS)1.09×10−102.39×10−81.33×10−64.91×10−73.53×10−9
    Au(HS)21.67×10−119.46×10−71.13×10−23.01×10−11.56×10−1
    Au(OH)7.35×10−121.80×10−103.14×10−96.65×10−103.92×10−12
    Au(OH)26.53×10−208.94×10−185.66×10−161.59×10−161.36×10−18
    AuCl25.67×10−158.62×10−127.71×10−95.22×10−81.05×10−8
    AuCl3.61×10−162.86×10−137.86×10−112.01×10−101.03×10−11
    下载: 导出CSV

    表 3  含硫配体在不同温度下平衡时的浓度(mol/L)

    Table 3.  Concentration (mol/L) of sulfur-containing ligands in equilibrium at different temperatures

    温度(℃)200300400500600
    H2S2O32.66×10−271.27×10−211.92×10−172.21×10−146.06×10−12
    HS2O34.42×10−246.31×10−194.15×10−151.00×10−125.89×10−11
    S2O32−2.81×10−214.51×10−184.91×10−144.48×10−122.30×10−10
    SO25.57×10−228.03×10−181.07×10−141.63×10−125.78×10−11
    HSO41.24×10−161.06×10−129.15×10−104.88×10−88.77×10−7
    SO42−1.82×10−147.38×10−135.55×10−107.20×10−98.92×10−8
    S34.64×10−213.82×10−152.10×10−105.15×10−73.75×10−4
    S22−3.56×10−162.03×10−142.52×10−115.98×10−101.45×10−8
    S32−1.17×10−211.59×10−181.89×10−142.25×10−121.71×10−10
    S42−2.43×10−279.35×10−231.11×10−176.91×10−151.74×10−12
    S52−4.15×10−334.20×10−275.20×10−211.75×10−171.54×10−14
    H2S3.46×10−103.35×10−92.49×10−89.31×10−82.00×10−7
    HS8.86×10−71.12×10−51.00×10−42.19×10−44.08×10−4
    S2−2.90×10−193.37×10−195.71×10−178.25×10−164.05×10−14
    下载: 导出CSV

    表 4  金的络合物在不同pH值下平衡时的浓度(mol/L)

    Table 4.  Concentration (mol/L) of gold complexes in equilibrium at different pH values

    pH值234567891011
    Au(HS)S31.37×10−18.97×10−21.98×10−34.83×10−42.68×10−41.00×10−41.92×10−62.43×10−85.24×10−103.12×10−12
    Au(HS)2.21×10−41.21×10−42.65×10−51.20×10−51.00×10−54.13×10−61.10×10−62.57×10−77.07×10−81.26×10−8
    Au(HS)26.77×10−41.04×10−31.26×10−34.35×10−35.34×10−22.51×10−12.51×10−12.50×10−12.46×10−12.23×10−1
    Au(OH)2.10×10−71.85×10−71.78×10−71.26×10−77.20×10−83.84×10−82.48×10−81.52×10−89.74×10−95.58×10−9
    AuCl22.04×10−42.15×10−52.40×10−62.10×10−71.29×10−84.42×10−103.20×10−111.68×10−121.27×10−135.12×10−15
    AuCl9.45×10−68.82×10−78.99×10−86.49×10−93.82×10−101.35×10−119.68×10−135.18×10−143.95×10−151.49×10−16
    下载: 导出CSV

    表 5  金的络合物在不同氧逸度下平衡时的浓度(mol/L)

    Table 5.  Concentration (mol/L) of gold complexes at equilibrium with different oxygen fugacity

    log10(fO2)−39−37−35−33−31−29−27−25−23−21
    Au(HS)S31.10×10−81.40×10−81.60×10−82.10×10−71.32×10−54.35×10−36.37×10−22.60×10−132.95×10−211.44×10−33
    Au(HS)1.40×10−71.60×10−71.80×10−78.30×10−72.26×10−67.24×10−61.04×10−51.19×10−88.64×10−114.19×10−14
    Au(HS)25.29×10−35.31×10−35.49×10−36.89×10−31.97×10−21.83×10−21.43×10−23.15×10−98.13×10−146.36×10−21
    Au(OH)5.93×10−116.58×10−118.18×10−116.35×10−103.30×10−91.49×10−81.09×10−77.44×10−71.51×10−64.49×10−6
    AuCl25.14×10−105.79×10−107.22×10−108.92×10−91.85×10−88.55×10−82.75×10−71.94×10−63.99×10−61.20×10−5
    AuCl1.13×10−111.79×10−112.78×10−111.38×10−106.65×10−103.79×10−91.39×10−88.94×10−81.84×10−75.52×10−7
    下载: 导出CSV

    表 6  金的络合物在不同盐度下平衡时的浓度(mol/L)

    Table 6.  The concentration (mol/L) of gold complexes in equilibrium at different salinities

    盐度w(wt.% NaCleq3.55.811.717.623.429.3
    Au(HS)S34.49×10−54.08×10−53.65×10−52.06×10−52.52×10−53.45×10−5
    Au(HS)5.93×10−65.58×10−65.50×10−63.21×10−63.16×10−63.65×10−6
    Au(HS)21.07×10−31.10×10−39.21×10−41.48×10−31.81×10−31.84×10−3
    Au(OH)5.20×10−84.78×10−84.77×10−82.29×10−82.26×10−82.74×10−8
    AuCl21.74×10−82.52×10−85.85×10−88.80×10−81.17×10−71.60×10−7
    AuCl1.83×10−92.07×10−93.41×10−94.18×10−94.79×10−95.84×10−9
    下载: 导出CSV

    表 7  金的络合物在不同S浓度的热液中平衡时的浓度(mol/L)

    Table 7.  The concentration (mol/L) of gold complexes at equilibrium in the hydrothermal solution with different S concentrations

    S浓度(wt.%)00.511.522.533.54
    Au(HS)S39.05×10−231.40×10−23.93×10−26.81×10−29.87×10−21.30×10−11.62×10−11.95×10−12.28×10−1
    Au(HS)3.00×10−103.30×10−54.19×10−54.75×10−55.16×10−55.49×10−55.79×10−56.02×10−56.24×10−5
    Au(HS)23.50×10−123.80×10−25.66×10−26.90×10−27.84×10−28.60×10−29.28×10−29.84×10−21.04×10−1
    Au(OH)9.61×10−81.01×10−71.06×10−71.09×10−71.11×10−71.13×10−71.15×10−71.17×10−71.18×10−7
    AuCl22.80×10−72.85×10−72.94×10−72.99×10−73.03×10−73.07×10−73.08×10−73.12×10−73.13×10−7
    AuCl6.60×10−97.02×10−97.41×10−97.68×10−97.88×10−98.05×10−98.19×10−98.32×10−98.43×10−9
    下载: 导出CSV

    表 8  三种主要类型金矿床热液体系平衡时金络合物浓度(mol/L)表

    Table 8.  Gold complexes concentration (mol/L) table at equilibrium of hydrothermal system in three main types of gold deposits

    矿床类型斑岩型浅成低温热液型造山型
    Au(HS)H2S1.67×10−53.07×10−208.77×10−12
    Au(HS)S35.18×10−63.10×10−184.02×10−10
    Au(HS)9.16×10−82.58×10−82.99×10−7
    Au(HS)21.79×10−21.10×10−67.61×10−2
    Au(OH)5.05×10−73.21×10−104.35×10−9
    AuCl21.20×10−65.65×10−142.00×10−12
    AuCl8.01×10−95.26×10−151.06×10−13
    下载: 导出CSV
  • [1]

    安 芳,朱永峰.2011.热液金矿成矿作用地球化学研究综述[J]. 矿床地质,30(5):799-814. doi: 10.3969/j.issn.0258-7106.2011.05.004

    [2]

    褚小磊. 2022. 吉黑东部陆缘中生代斑岩型铜成矿作用研究[D]. 吉林大学博士学位论文.

    [3]

    胡庆成,吕新彪,高 奇,刘 洪,朱 江,杨恩林.2012.热液金矿金的溶解和迁移研究进展[J]. 地球科学进展,27(8):847-856.

    [4]

    黄 诚,张德会.2013.热液金矿成矿元素运移和沉淀机理研究综述[J]. 地质科技情报,32(4):162-170.

    [5]

    蒋少涌,王 微.2022.战略性关键金属是如何发生超常富集成矿的?[J]. 地球科学,47(10):3869-3871.

    [6]

    金咏洁,温书琪,王 硕,李新宇,秦 超,唐玉莹,张聚全.2022.山西省义兴寨金矿孙庄岩体磷灰石与角闪石的氧逸度计算[J]. 河北地质大学学报,45(4):13-19.

    [7]

    凌洪飞.2011.论花岗岩型铀矿床热液来源——来自氧逸度条件的制约[J]. 地质论评,57(2):193-206.

    [8]

    刘星成,许 婷,熊小林,李 立,李建威.2021.岩浆熔/流体中金的溶解度:高温高压实验研究进展[J]. 中国科学:地球科学,51(9):1477-1488.

    [9]

    毛光武,曹 亮,严卸平,舒文辉,祖俊龙,王波涛.2015.浅成低温热液型金矿研究综述[J]. 地质找矿论丛,30(1):121-132.

    [10]

    汤化伟,李 珍.2012.成矿金属元素的溶解性分析和测试技术发展[J]. 地质科技情报,31(1):137-142.

    [11]

    王京彬,王玉往,李庆哲,林寿洪,王晨昇,张会琼,李德东.2024.造山型金矿容矿建造分类、成矿模式及找矿勘查[J]. 地质学报,98(3):898-919.

    [12]

    王义天,刘俊辰,毛景文.2020.3种主要类型金矿床成矿特征、成矿条件及找矿意义[J]. 黄金,41(9):12-21.

    [13]

    熊小林,刘星成,李 立,王锦团,陈 伟,阮梦飞,许 婷,孙众星,黄芳芳,李建平,张 磊.2020.俯冲带微量元素分配行为研究:进展和展望[J]. 中国科学:地球科学,50(12):1785-1798.

    [14]

    杨 航,秦克章,吴 鹏,王 峰,陈福川.2023.斑岩铜-钼-金矿床:构造环境、成矿作用与控制因素[J]. 矿床地质,42(1):128-156.

    [15]

    杨 颖,王佳新,张雪旎,袁顺达.2024.热液体系溶解度实验和热力学计算方法在成矿过程模拟中的应用[J]. 矿床地质,43(1):71-85.

    [16]

    张达兵,查寿才,李勤美,刘建平,张武鹏,陈明贵.2020.云南省普洱市金矿床成因类型[J]. 矿产与地质,34(6):1051-1061+1068.

    [17]

    周冠轩,王英滨,黄 靖,张德会.2021.中低温成矿流体中氯配合物和硫氢配合物在铜金属迁移中的行为[J]. 地球化学,50(4):354-364.

    [18]

    周 琪,彭惠娟,张云龙,罗泽雄,黄茂坤,毛星星,陈 曦.2024.云南思茅银子山金多金属矿床成矿流体特征及演化[J]. 矿物岩石地球化学通报,43(1):178-191.

    [19]

    周涛发,刘晓东,袁 峰,赵 勇,岳书仓.2000.安徽月山矿田成矿流体中铜、金的迁移形式和沉淀的物理化学条件[J]. 岩石学报,(4):551-558.

    [20]

    宗庆鑫,胡加昆,伍 伟,肖静珊.2022.印度尼西亚Ciemas浅成低温热液型金矿矿物学特征分析[J]. 现代矿业,38(11):148-153+169.

    [21]

    Brenan J M, Bennett N R, Zajacz Z. 2016. Experimental results on fractionation of the highly siderophile elements (HSE) at variable pressures and temperatures during planetary and magmatic differentiation[J]. Reviews in Mineralogy and Geochemistry, 81: 1-87. doi: 10.2138/rmg.2016.81.1

    [22]

    Frimmel H. 2008. Earth's continental crustal gold endowment[J]. Earth and Planetary Science Letters, 267(1/2): 45-55.

    [23]

    Hanley J J, Pettke T, Mungall J E, Spooner E T C. 2005. Investigations of the behavior and distribution of platinum and gold in silicate melt–brine mixtures at 1.5 kbar, 600 to 800 ℃ using synthetic fluid inclusions methods: a laser ablation ICPMS pilot study[J]. Geochimica et Cosmochimica Acta, 69: 2593-2611. doi: 10.1016/j.gca.2004.11.005

    [24]

    Heinrich C A, Candela P A. 2014. Fluids and ore formation in the Earth’s crust[M]. //Holland H D, Turekian K K, eds. Treatise on Geochemistry.

    [25]

    Heinrich C A. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study[J]. Mineralium Deposita, 39(8): 864-889. doi: 10.1007/s00126-004-0461-9

    [26]

    Helgeson H C. 1969. Thermodynamics of hydrothermal systems at elevated temperatures and pressures[J]. American Journal of Science, 267(7): 729-804. doi: 10.2475/ajs.267.7.729

    [27]

    Helgeson H C. 1981. Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures[J]. Physics and Chemistry of the Earth, 13: 133-177.

    [28]

    Kouzmanov K, Pokrovski G S. 2012. Hydrothermal Controls on Metal Distribution in Porphyry Cu (-Mo-Au) Systems[M]. // Hedenquist J W, Harris M, Camus F, eds. Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. Special Publication of Society of Economic Geologists: 573-618.

    [29]

    Kulik D A, Wagner T, Dmytrieva S V, Kosakowski G, Hingerl F F, Chudnenko K V, Berner U. 2013. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes[J]. Computational Geosciences, 17: 1-24.

    [30]

    Lai F, Zou S H, Xu D R. 2022. Silver complexation in chlorine-and sulfur-rich hydrothermal fluids: Insight from ab initio molecular dynamics simulations[J]. Chemical Geology, 589: 120684. doi: 10.1016/j.chemgeo.2021.120684

    [31]

    Li H J, Wang Q F, Weng W J, Dong C Y, Yang L, Wang X, Deng J. 2022. Co-precipitation of gold and base metal sulfides during fluid boiling triggered by fault-valve processes in orogenic gold deposits[J]. Ore Geology Reviews, 149: 105090. doi: 10.1016/j.oregeorev.2022.105090

    [32]

    Liu W H, Etschmann B, Testemale D, Hazemann J L, Rempel K, Müller H, Brugger J. 2014. Gold transport in hydrothermal fluids: Competition among the Cl, Br, HS and NH3(aq) ligands[J]. Chemical Geology, 376: 11-19. doi: 10.1016/j.chemgeo.2014.03.012

    [33]

    Mei Y, Liu W H, Brugger J, Guan Q S. 2020. Gold solubility in alkaline and ammonia-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations [J]. Geochimica et Cosmochimica Acta, 291: 62-78. doi: 10.1016/j.gca.2019.12.031

    [34]

    Mei Y, Sherman D M, Liu W H, Brugger J. 2013. Ab initio molecular dynamics simulation and free energy exploration of copper(I) complexation by chloride and bisulfide in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta, 102: 45-64. doi: 10.1016/j.gca.2012.10.027

    [35]

    Pitzer K S. 1983. Dielectric constant of water at very high temperature and pressure[J]. Proceedings of the National Academy of Sciences of the United States of America, 80(14): 4575-4576.

    [36]

    Pokrovski G S, Akinfiev N N, Borisova A Y, Zotov A V, Kouzmanov K. 2014. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling[J]. Geological Society, London, Special Publications, 402(1): 9-70.

    [37]

    Pokrovski G S, Dubessy J. 2015. Stability and abundance of the trisulfur radical ion S3 in hydrothermal fluids[J]. Earth and Planetary Science Letters, 411: 298-309. doi: 10.1016/j.jpgl.2014.11.035

    [38]

    Pokrovski G S, Kokh M A, Guillaume D, Borisova A Y, Gisquet P, Hazemann J L, Lahera E, Net W D, Proux O, Testemale D, Haigis V, Jonchiere R, Seitsonen A P, Ferlat G, Vuilleumier R, Saitta A M, Boiron M C, Dubessy J. 2015. Sulfur radical species form gold deposits on Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 112(44): 13484-13489.

    [39]

    Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere[J]. Geology, 37(3): 247-250. doi: 10.1130/G25451A.1

    [40]

    Seward T M. 1973. Thio complexes of gold and the transport of gold in hydrothermal ore solutions[J]. Geochimica et cosmochimica Acta, 37(3): 379-399. doi: 10.1016/0016-7037(73)90207-X

    [41]

    Stefánsson A, Seward T M. 2003. Stability of chloridogold (I) complexes in aqueous solutions from 300 to 600 ℃ and from 500 to 1800 bar[J]. Geochimica et Cosmochimica Acta, 67(23): 4559-4576. doi: 10.1016/S0016-7037(03)00391-0

    [42]

    Wagner T, Kulik D A, Hingerl F F, Dmytrieva S V. 2012. GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models[J]. Canadian Mineralogist, 50: 1173-1195. doi: 10.3749/canmin.50.5.1173

    [43]

    Williams-Jones A E, Bowell R J, Migdisov A A. 2009. Gold in solution[J]. Elements, 5: 281-287. doi: 10.2113/gselements.5.5.281

    [44]

    Yin Y W, Zajacz Z. 2018. The solubility of silver in magmatic fluids: Implications for silver transfer to the magmatic-hydrothermal ore-forming environment[J]. Geochimica et Cosmochimica Acta, 238: 235-251. doi: 10.1016/j.gca.2018.06.041

    [45]

    Zhong R C, Brugger J, Chen Y J, Li W B. 2015. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids[J]. Chemical Geology, 395: 154-164. doi: 10.1016/j.chemgeo.2014.12.008

    [46]

    Zotov A V, Kuzmin N N, Reukov V L, Tagirov B R. 2018. Stability of AuCl2 from 25 to 1000 ℃ at Pressures to 5000 bar and consequences for hydrothermal gold mobilization[J]. Minerals, 8(7): 286. doi: 10.3390/min8070286

  • 加载中

(4)

(8)

计量
  • 文章访问数:  52
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2024-12-03
修回日期:  2025-01-18
刊出日期:  2025-03-20

目录