低渗页岩储层渗透性的表征与计算

何柳. 2025. 低渗页岩储层渗透性的表征与计算. 华南地质, 41(2): 451-461. doi: 10.3969/j.issn.2097-0013.2025.02.017
引用本文: 何柳. 2025. 低渗页岩储层渗透性的表征与计算. 华南地质, 41(2): 451-461. doi: 10.3969/j.issn.2097-0013.2025.02.017
HE Liu. 2025. Characterization and Calculation of Permeability in Low-permeability Shale Reservoirs. South China Geology, 41(2): 451-461. doi: 10.3969/j.issn.2097-0013.2025.02.017
Citation: HE Liu. 2025. Characterization and Calculation of Permeability in Low-permeability Shale Reservoirs. South China Geology, 41(2): 451-461. doi: 10.3969/j.issn.2097-0013.2025.02.017

低渗页岩储层渗透性的表征与计算

  • 基金项目: 中国石油化工股份有限公司项目“红星及周缘地区二叠系天然气富集规律及预测技术研究(ZKD0224003)”
详细信息
    作者简介: 何柳(1991—),女,助理研究员,主要从事页岩气勘探开发研究,E-mail:heliu.jhyt@sinopec.com
  • 中图分类号: P618.13

Characterization and Calculation of Permeability in Low-permeability Shale Reservoirs

  • 针对达西公式折算的渗透率无法准确表征特低渗页岩储层渗透性的问题,本文应用微圆管与真实页岩岩心开展流动(渗流)实验,测定了不同渗流速度下渗透率的变化,基于气体在微管中的微尺度效应,对克氏渗透率计算公式进行了改进。结果表明页岩特低渗储层单相流体的渗透率并不是一个常数,而是存在微尺度流动效应,随流速(压力)的增加呈非线性增加,当流速(压力)增至某一特定值时趋于稳定。由改进的渗透率模型计算的实际岩心在各个压力点下的绝对渗透率值误差均在5%以内,反映该模型在表征特低渗储层渗透性上的显著优势。

  • 加载中
  • 图 1  微圆管高压页岩气测渗透率测定装置流程图

    Figure 1. 

    图 2  不同流速下微管中的视渗透率和理论渗透率变化情况

    Figure 2. 

    图 3  涪陵页岩气田志留系页岩岩心样品中不同流速下视渗透率变化曲线

    Figure 3. 

    图 4  甲烷在不同直径微管中流量随压差的变化情况

    Figure 4. 

    图 5  不同管径下甲烷在毛管模型中的折算渗透率与流速的关系

    Figure 5. 

    图 6  涪陵页岩气田志留系不同页岩岩心样品(JY-2—JY-8)的气测渗透率随压力倒数的变化

    Figure 6. 

    图 7  涪陵页岩气田志留系不同页岩岩心(JY-2—JY-8)实验中克努森数随压力的变化情况

    Figure 7. 

    图 8  涪陵页岩气田志留系不同岩心气体滑移减阻力率随平均压力的变化

    Figure 8. 

    表 1  涪陵页岩气田志留系页岩岩心物性参数表

    Table 1.  Petrophysical parameters of Silurian shale cores from the Fuling Shale Gas Field

    岩心编号绝对渗透率(×10−3 μm2孔隙度(%)
    JY-20.04115.8
    JY-30.0335.0
    JY-40.04555.9
    JY-50.10817.0
    JY-60.11367.2
    JY-70.4657.5
    JY-80.99517.9
    下载: 导出CSV

    表 2  岩心JY-5在不同压力区间内用Klinkenberg校正法求得的绝对渗透率

    Table 2.  Absolute permeability of core JY-5 at different pressure intervals using the Klinkenberg correction method

    入口绝对压力(MPa) 0.131 ~ 0.233 0.131 ~ 0.331 0.131 ~ 0.611 0.233 ~ 0.711 0.85 ~ 1.1
    绝对渗透率
    (×10−3 μm2
    −0.077 −0.011 0.0469 0.0988 0.11
    下载: 导出CSV

    表 3  岩心样品JY-2和JY-8由公式15(单点稳态法)及公式5计算绝对渗透率值及计算误差对比

    Table 3.  Comparison of absolute permeability values and calculation errors for core samples JY-2 and JY-8 derived from Equation 15 (single-point steady-state method) and Equation 5

    岩心
    样号
    入口绝对
    压力(MPa)
    克努森数
    Kn
    实验气测
    渗透率值(mD)
    公式15计算的
    绝对渗透率(mD)
    公式15计算的
    误差(%)
    公式5计算的
    绝对渗透率(mD)
    公式5计算的
    误差(%)
    JY-2 0.138 0.285 0.124 0.043 4.6 0.046 10.65
    0.221 0.212 0.091 0.039 5.0 0.048 16.7
    0.341 0.154 0.074 0.040 2.7 0.054 31.4
    0.471 0.119 0.065 0.040 2.7 0.057 38.7
    0.579 0.1 0.062 0.039 5.0 0.058 41.2
    0.68 0.087 0.06 0.041 0.2 0.058 41.2
    0.78 0.077 0.058 0.042 2.2 0.057 38.7
    0.88 0.07 0.056 0.042 2.2 0.056 36.3
    0.976 0.063 0.055 0.042 2.2 0.055 34.1
    JY-8 0.3497 0.110 1.16 1.0031 0.8 0.995 0.01
    0.2809 0.134 1.22 1.0051 1.0 0.996 0.13
    0.2092 0.185 1.32 1.0081 1.4 1.007 1.23
    0.1628 0.257 1.43 1.0123 1.7 1.049 5.41
    0.1271 0.398 1.58 1.0172 2.2 1.163 16.87
    注:JY-2和JY-8在较高压下排除粘度变化影响计算的Klinkenberg渗透率分别为0.0411 mD0.9951 mD.
    下载: 导出CSV
  • [1]

    常 进,高树生,胡志明,薛 慧.2015.高压气体微管流动机理[J]. 石油学报,36(12):1559-1563+1570. doi: 10.7623/syxb201512010

    [2]

    陈代珣.2002.渗流气体滑脱现象与渗透率变化的关系[J]. 力学学报,34(1):96-100. doi: 10.3321/j.issn:0459-1879.2002.01.011

    [3]

    陈孝红,李 海,苗凤彬,罗胜元.2022.中扬子古隆起周缘寒武系页岩气赋存方式与富集机理[J]. 华南地质,38(3):394-407. doi: 10.3969/j.issn.2097-0013.2022.03.003

    [4]

    胡德高,杨 峰,舒志国,郑爱维,郑 何,吕 斌.2021.川南地区龙马溪页岩气体滑脱效应实验研究[J]. 地质科技通报,40(2):36-41.

    [5]

    刘 杰,张永利,胡志明,李英杰,杨新乐.2018.页岩气储层纳米级孔隙中气体的质量传输机理及流态实验[J]. 天然气工业,38(12):87-95. doi: 10.3787/j.issn.1000-0976.2018.12.010

    [6]

    苗凤彬,张国涛,张保民,王 强,田 巍,吕 嵘,周 鹏.2025.湘中坳陷二叠系龙潭组页岩气富集主控因素及勘探潜力[J]. 华南地质,41(1):109-125.

    [7]

    孙艳玲,高 博,佟智强,王建伟,谷马军,王 振,刘启明.2024.页岩纳米孔隙中滑脱效应及克努森扩散实验研究[J]. 地质与资源,33(5):671-679.

    [8]

    王 彬,梅海燕,张茂林,李 闽,孙良田.2004.低渗透气藏气体渗流速度修正式[J]. 西南石油学院学报,26(1):32-34+3.

    [9]

    王登科,袁明羽,李 振,张清清,尚政杰,付建华,王岳栩,唐家豪,郭玉杰,庞晓非.2024.微纳米孔隙内气体流动特性与LBM数值模拟研究[J]. 河南理工大学学报(自然科学版),43(2):15-25.

    [10]

    王勇杰,王昌杰,高家碧.1995.低渗透多孔介质中气体滑脱行为研究[J]. 石油学报,16(3):101-105. doi: 10.3321/j.issn:0253-2697.1995.03.008

    [11]

    吴 英,程林松,宁正福.2005.低渗气藏克林肯贝尔常数和非达西系数确定新方法[J]. 天然气工业,25(5):78-80+11. doi: 10.3321/j.issn:1000-0976.2005.05.025

    [12]

    肖灯意,谢 瑾,戚群丽,田文元,毕建玲,陈 璐,蒿艳飞,宋慧靖.2023.阿联酋西部Diyab组灰质页岩气储层矿物组成及孔隙特征[J]. 华南地质,39(1):85-94.

    [13]

    许露露,陈绵琨,刘早学,姚明君,周向辉,罗 凡,刘 备.2025.渝东地区龙门坝剖面二叠系孤峰组地质特征[J]. 资源环境与工程,39(2):131-138.

    [14]

    中国石油天然气总公司. 1996. 中华人民共和国石油天然气行业标准《岩心常规分析方法(SY/T 5336—1996)》[S]. 北京,:中国标准出版社.

    [15]

    朱光亚,刘先贵,李树铁,黄延章,郝明强.2007.低渗气藏气体渗流滑脱效应影响研究[J]. 天然气工业,27(5):44-47+150. doi: 10.3321/j.issn:1000-0976.2007.05.013

    [16]

    Al-Jabri R A, Al-Maamari R S, Wilson O B. 2015. Klinkenberg-corrected gas permeability correlation for Shuaiba carbonate formation[J]. Journal of Petroleum Science and Engineering, 131: 172-176. doi: 10.1016/j.petrol.2015.04.025

    [17]

    Chen Y F, Jiang C B, Leung J Y, Wojtanowicz A K, Zhang, D M. 2020. Gas slippage in anisotropically-stressed shale: An experimental study[J]. Journal of Petroleum Science and Engineering, 195: 107620. doi: 10.1016/j.petrol.2020.107620

    [18]

    Fang X, Yue X A, An W Q, Feng X G. 2019. Experimental study of gas flow characteristics in micro-/nano-pores in tight and shale reservoirs using microtubes under high pressure and low pressure gradients[J]. Microfluidics and Nanofluidics, 23(1): 45-57.

    [19]

    Feng D, Chen Z X, Wu K L, Li J, Dong X H, Peng Y, Jia X F, Li X F, Wang D H. 2022. A comprehensive review on the flow behaviour in shale gas reservoirs: Multi‐scale, multi‐phase, and multi‐physics[J]. The Canadian Journal of Chemical Engineering, 100(11): 3084-3122. doi: 10.1002/cjce.24439

    [20]

    Florence F A, Rushing J A, Newsham K E, Blasingame T A. 2007. Improved permeability prediction Relations for low-permeability sands[C]//SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. SPE: SPE-107954-MS.

    [21]

    Gao F, Liu J, Wang J G, Ju Y, Leung C F. 2017. Impact of micro-scale heterogeneity on gas diffusivity of organic-rich shale matrix[J]. Journal of Natural Gas Science and Engineering, 45: 75-87. doi: 10.1016/j.jngse.2017.04.029

    [22]

    Gao J, Li Z X, Wei M H, Zhang C S. 2024. Experimental study on the Klinkenberg effect for gas permeability in carboniferous shales, Eastern Qaidam Basin, China[J]. Energy Exploration and Exploitation, 42(4): 1386-1407. doi: 10.1177/01445987241231328

    [23]

    Javadpour F, Singh H, Rabbani A, Babaei M, Enayati S. 2021. Gas flow models of shale: a review[J]. Energy & Fuels, 35(4): 2999-3010.

    [24]

    Jones F O, Owens W W. 1980. A laboratory study of low-permeability gas sands[J]. Journal of petroleum Technology, 32(9): 1631-1640. doi: 10.2118/7551-PA

    [25]

    Josh M, Esteban L, Delle Piane C, Sarout J, Dewhurst D N, Clennell M B. 2012. Laboratory characterisation of shale properties[J]. Journal of Petroleum Science and Engineering, 88-89: 107-124. doi: 10.1016/j.petrol.2012.01.023

    [26]

    Karniadakis G E M, Beskok A, Gad-el-Hak M. 2002. Micro flows: fundamentals and simulation[J]. Applied Mechanics Reviews, 55(4): B76.

    [27]

    Li G L, Li G F, Luo C, Zhou R Q, Zhou J, Yang J J. 2023. Dynamic evolution of shale permeability under coupled temperature and effective stress conditions[J]. Energy, 266: 126320. doi: 10.1016/j.energy.2022.126320

    [28]

    Loudon C, McCulloh K. 1999. Application of the Hagen-Poiseuille Equation to fluid feeding through short Tubes[J]. Annals of the Entomological Society of America, 92(1): 153-158. doi: 10.1093/aesa/92.1.153

    [29]

    Moghadam A A, Chalaturnyk R. 2014. Expansion of the Klinkenberg's slippage equation to low permeability porous media[J]. International Journal of Coal Geology, 123: 2-9. doi: 10.1016/j.coal.2013.10.008

    [30]

    Sampath K, Keighin C W. 1982. Factors affecting gas slippage in tight sandstones of cretaceous age in the Uinta basin[J]. Journal of Petroleum Technology, 34(11): 2715-2720. doi: 10.2118/9872-PA

    [31]

    Singh H, Javadpour F, Ettehadtavakkol A, Darabi H. 2014. Nonempirical apparent permeability of shale[J]. SPE Reservoir Evaluation & Engineering, 17(3): 414-424.

    [32]

    Sun C X, Nie H K, Su H K, Du W, Lu T, Chen Y L, Liu M, Li J C. 2023. Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 50(1): 85-98. doi: 10.1016/S1876-3804(22)60371-9

    [33]

    Sutherland W. 1893. LII. The viscosity of gases and molecular force[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223): 507-531.

    [34]

    Wei J, Duan H M, Yan Q. 2021. Shale gas: Will it become a new type of clean energy in China?—A perspective of development potential[J]. Journal of Cleaner Production, 294: 126257. doi: 10.1016/j.jclepro.2021.126257

  • 加载中

(8)

(3)

计量
  • 文章访问数:  55
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2025-03-23
修回日期:  2025-04-24
刊出日期:  2025-06-30

目录