Rapid Determination of Rare Earth Element Content in Molten Glass Sheets Using Laser Ablation (LA) - ICP-MS and an Application Example of Rock Samples from Muzidian, South China
-
摘要:
传统溶液进样SN-ICP-MS技术测定微量元素存在耗时较长、交叉污染风险及难溶矿物是否完全溶解等问题,本文针对XRF(X射线荧光光谱仪)主量元素测试的玻璃片,建立了一种利用193 nm ArF准分子激光剥蚀系统(LA)与ICP-MS联用快速分析样品微量元素丰度的方法。根据硼酸锂熔融玻璃片样品的特点,优化了激光参数,系统比较了选择不同内标元素和不同基质外部参考标准对分析结果的影响。实验结果表明,采用Ca为内标、NIST612为外标的校正策略,可在GSR系列花岗岩、安山岩、玄武岩等8种标样中获得高精度稀土元素数据(相对偏差SD<10%,相对标准偏差RSD<10%)。与前人利用飞秒激光系统的分析结果对比显示,193 nm准分子激光在稀土元素分析中具有相似的可靠性,但在过渡金属元素(如Sc)分析上存在局限性。将该方法应用于华南木子店地区基性-超基性岩样品,其LA-ICP-MS与SN-ICP-MS的稀土数据相对偏差≤12%,验证了方法的实用性。本研究提出的硼酸锂熔融玻璃制备结合准分子激光分析技术,显著简化了前处理流程(样品总用量约0.6 g),规避了酸消解和稀释过程中的交叉污染风险,为开展全岩稀土元素地球化学研究提供了一个高效手段。
Abstract:Due to the limits of the conventional solution nebulization SN-ICP-MS method for trace element measurement such as relatively long data-return time, potential risk of contamination, and the difficulty of digesting refractory, this study developed a new method for the trace element measurement of XRF glass bead using a 193 nm ArF laser ablation (LA) system coupled with Q-ICP-MS. Based on the sample matrix of LiBrO3 glass, we optimized the laser parameters and systematically evaluated the effects of different internal and external standards for data normalization. Our experimental results revealed that the use of Ca as the internal standard and NIST612 as the external standard yielded the best trace element data for eight reference materials of different lithologies including granite, andesite, and basalt (relative deviation <10%, RSD <10%). Compared with the results using femtosecond laser systems, our experiments show similar precision and accuracy for REE data, however, limitations persisted for transitional metals (e.g., Sc). We also presented a case study of mafic rocks in the Muzidian area of the South China Block, our data showed a ≤12% relative deviation between LA-ICP-MS and SN-ICP-MS REE data, which confirmed the utility of this method. In summary, our proposed highly efficient trace element analytical protocol based on the XRF glass bead requires a relatively small amount of sample (approximately 0.6 g, depending on the size of the glass bead). Also avoids the risk of inter-sample contamination during conventional chemical procedures, which yielded comparable quality of whole-rock REE data with the conventional solution-based methods.
-
Key words:
- in situ microanalysis /
- Silicate glass /
- LA-ICP-MS /
- trace elements /
- REE
-
-
表 1 制作的玻璃熔片组成成分
Table 1. Composition of the produced glass melt
称量试剂 称量质量(g) 固体溶剂(45Li2B4O7 + 10LiBO2 + 5LiF) 6.0000 ±0.0002 硝酸铵(NH4NO3) 0.30±0.001 样品 0.6000 ±0.0001 表 2 本次实验激光剥蚀系统和ICP-MS的操作条件
Table 2. Operating conditions for laser denudation systems and ICP-MS in this experiment
激光剥蚀系统
(Teledyne Analyte Excite)ICP-MS
(Thermo Scientific)激光类型 ArF准分子激光 射频功率 1550 W激光波长 193 nm 冷却气(Ar)流速 14 L min−1 能量密度 5 J/cm2 辅助气(Ar)流速 0.85 L min−1 束斑直径 150 μm 载气(Ar)流速 1 L min−1 频率 20 Hz 采样深度 5.5 mm 剥蚀模式 线扫模式 同位素驻留时间 10 ms 激光移动速度 10 μm/s 检测器模式 Dual Cup gas (He) 0.3 L/min Cell gas (He) 0.35 L/min 表 3 木子店样品熔融玻璃主量元素XRF测定结果(%)
Table 3. Results of XRF determination of the main element of molten glass from Muzidian samples (mass %)
样品号 岩性 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 烧失量 总量 M2-14 基性斜长角闪岩 46.68 3.748 13.14 17.31 0.28 5.26 8.47 2.90 1.176 0.380 0.20 99.55 M2-68 基性斜长角闪岩 47.42 0.618 8.43 13.12 0.21 16.13 9.03 0.98 1.994 0.169 1.33 99.42 M2-75 超基性岩 44.87 0.415 9.00 10.29 0.14 20.83 5.64 0.45 4.831 0.191 1.82 98.48 表 4 采用本研究建立的方法和 SN-ICP-MS法测试的木子店样品稀土元素组成(×10−6)
Table 4. REE composition of Muzidian samples measured by the method established in this study and SN-ICP-MS method (×10−6)
元素 M2-14 M2-68 M2-75 LA-ICP-MS法 SN-ICP-MS法 相对偏差RD(%) 偏差允许
限YC(%)LA-ICP-MS法 SN-ICP-MS法 相对偏差RD(%) 偏差允许
限YC(%)LA-ICP-MS法 SN-ICP-MS法 相对偏差RD(%) 偏差允许
限YC(%)Sc 33.93 35.82 5.28 21.81 26.19 26.32 0.47 22.79 24.70 24.36 −1.42 23.01 Y 54.01 52.37 −3.13 20.13 15.30 14.76 −3.63 24.93 10.86 11.27 3.57 26.37 La 33.24 34.63 4.02 21.89 20.45 21.14 3.28 23.76 10.75 11.24 4.37 26.41 Ce 77.56 83.88 7.53 18.89 44.88 44.55 −0.74 20.79 24.07 26.16 7.98 23.28 Pr 10.73 12.25 12.35 26.42 5.10 5.56 8.14 29.77 3.27 3.37 2.95 31.93 Nd 48.99 49.02 0.05 20.47 22.35 22.35 0.01 23.4 14.20 14.20 0.02 25.24 Sm 11.73 11.65 −0.63 26.04 4.29 4.26 −0.69 30.6 2.93 2.96 0.95 32.49 Eu 3.11 3.18 2.30 32.19 1.15 1.21 4.85 37.51 0.65 0.65 0.03 40.95 Gd 11.37 11.21 −1.37 26.17 3.70 3.62 −2.18 31.33 2.53 2.53 0.00 33.25 Tb 1.76 1.77 0.41 35.16 0.50 0.52 3.85 42.52 0.32 0.36 10.78 45.37 Dy 10.95 10.67 −2.63 26.33 3.03 3.03 0.01 32.32 2.05 2.15 4.49 34.34 Ho 2.23 2.04 −9.56 33.89 0.61 0.56 −8.21 41.3 0.42 0.42 0.14 43.68 Er 6.20 5.60 10.79 28.86 1.66 1.53 −8.22 35.48 1.18 1.14 −3.13 37.38 Tm 0.85 0.79 −6.95 39.29 0.21 0.21 −1.25 48.27 0.15 0.15 1.28 50.64 Yb 5.69 5.16 10.23 29.27 1.50 1.34 11.68 36.03 1.09 1.04 −4.77 37.85 Lu 0.83 0.76 −9.25 39.40 0.21 0.20 −5.77 48.36 0.15 0.16 6.91 50.73 -
[1] 龚 仓,丁 洋,陆海川,卜道露,王立华,熊 韬,张志翔.2021.五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试,40(3):340-348.
[2] 柯于球,郭 伟,靳兰兰,胡圣虹. 2017. 微体古化石LA-ICP-MS稀土元素微区分析与成像[C]. 第十六届全国稀土分析化学学术研讨会论文集,12.
[3] 李大勇,朱志雄,李 靖,王 亮.2020.X射线荧光光谱法半定量分析高烧失量矿物的准确度研究[J]. 岩矿测试,39(1):135-142.
[4] 刘勇胜,胡兆初,李 明,高 山.2013.LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报,58(36):3753-3769.
[5] 刘玉纯,林庆文,马 玲,梁述廷.2018.粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试,37(6):671-677.
[6] 马生凤,赵文博,朱 云,孙红宾,王 蕾,温宏利.2018.碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素[J]. 岩矿测试,37(6):650-656.
[7] 邱啸飞,陈伟雄,徐大良,赵小明,童喜润.2022.扬子陆核崆岭杂岩太古宙地壳演化[J]. 华南地质,38(1):56-66. doi: 10.3969/j.issn.2097-0013.2022.01.004
[8] 邱啸飞.2022.扬子克拉通北部前泥盆纪地壳演化:来自碎屑锆石U-Pb和Hf同位素证据[J]. 地质学报,96(11):3784-3798. doi: 10.3969/j.issn.0001-5717.2022.11.009
[9] 邱啸飞,彭练红,孔令耀,邓 新,王 达,陈伟雄,吴年文,童喜润,田 洋,牛志军.2024.北大别构造带始太古代片麻岩的发现[J]. 地球科学,49(11):3960-3970.
[10] 吴 波,吴治君,赵明峰,彭慈刚,斯恩智,周克林,杨恩林,潘有良,陆建宝.2024.贵州百地金矿床石英微量元素和H-O同位素地球化学特征及其矿床成因意义[J]. 华南地质,40(4):633-645. doi: 10.3969/j.issn.2097-0013.2024.04.003
[11] 吴 磊,刘义博,王家松,吴良英,张 楠,王 娜.2018.高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J]. 岩矿测试,37(6):637-643.
[12] 吴石头,王亚平,许春雪.2015.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J]. 岩矿测试,34(5):503-511.
[13] 杨晶晶,王 英,付 立,王瑛琦.2025.电感耦合等离子体质谱法测定内蒙古通辽地区生活饮用水中23种重金属元素[J]. 实验室检测,3(1):5-8.
[14] 曾美云,何启生,邵 鑫,杨小丽.2022.全自动石墨消解-电感耦合等离子体质谱法测定岩石样品中稀土元素[J]. 华南地质,38(4):708-714. doi: 10.3969/j.issn.2097-0013.2022.04.013
[15] 张晨西,苗 琦,倪 倩.2016.地质全岩样品LA-ICP-MS整体分析的前处理方法[J]. 矿物岩石地球化学通报,35(3):479-486+401. doi: 10.3969/j.issn.1007-2802.2016.03.011
[16] 张德贤,戴塔根,胡 毅.2012.磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨[J]. 岩矿测试,31(1):120-126. doi: 10.3969/j.issn.0254-5357.2012.01.015
[17] 张志喜,黄惠琴.2014.电感耦合等离子体质谱法测定地球化学样品中的银、砷、锑、铋[J]. 中国无机分析化学,4(1):46-49. doi: 10.3969/j.issn.2095-1035.2014.01.012
[18] 赵小刚,樊新胜,刘雅囡.2021.基于XRF分析的土壤中重金属元素调查[J]. 自然科学,9(5):828-836.
[19] Beauchemin D. 2002. Inductively Coupled Plasma Mass Spectrometry[J]. Analytical Chemistry, 74(12): 2873-2894. doi: 10.1021/ac020254y
[20] Catlos E J, Sorensen S S, Harrison T M. 2000. Th-Pb ion-microprobe dating of allanite[J]. American Mineralogist, 85(5-6): 633-648. doi: 10.2138/am-2000-5-601
[21] Cotta A J B, Enzweiler J. 2012. Classical and New Procedures of Whole Rock Dissolution for Trace Element Determination by ICP‐MS[J]. Geostandards and Geoanalytical Research, 36(1): 27-50. doi: 10.1111/j.1751-908X.2011.00115.x
[22] Eggins S M. 2003. Laser Ablation ICP-MS Analysis of Geological Materials Prepared as Lithium Borate Glasses[J]. Geostandards and Geoanalytical Research, 27(2): 147-162. doi: 10.1111/j.1751-908X.2003.tb00642.x
[23] Gaspar M, Knaack C, Meinert L D, Moretti R. 2008. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit[J]. Geochimica et Cosmochimica Acta, 72(1): 185-205. doi: 10.1016/j.gca.2007.09.033
[24] Glaus R, Kaegi R, Krumeich F, Günther D. 2010. Phenomenological studies on structure and elemental composition of nanosecond and femtosecond laser-generated aerosols with implications on laser ablation inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta, Part B, 65(9-10): 812-822.
[25] Günther D, Quadt A V, Wirz R, Cousin1 H, Dietrich V J. 2001. Elemental Analyses Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) of Geological Samples Fused with Li2B4O7 and Calibrated Without Matrix-Matched Standards[J]. Microchimica Acta, 136(3-4): 101-107. doi: 10.1007/s006040170038
[26] He Z W, Huang F, Yu H M, Xiao Y L, Wang F Y, Li Q L, Xia Y, Zhang X C. 2016. A Flux‐Free Fusion Technique for Rapid Determination of Major and Trace Elements in Silicate Rocks by LA‐ICP‐MS[J]. Geostandards and Geoanalytical Research, 40(1): 5-27. doi: 10.1111/j.1751-908X.2015.00352.x
[27] Jochum K P, Scholz D, Stoll B, Weis U, Wilson S A, Yang Q C, Schwalb A, Börner N, Jacob D E, Andreae M O. 2012. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS[J]. Chemical Geology, 318-319: 31-44. doi: 10.1016/j.chemgeo.2012.05.009
[28] Koch J, Günther D. 2007. Femtosecond laser ablation inductively coupled plasma mass spectrometry: achievements and remaining problems[J]. Analytical and Bioanalytical Chemistry, 387(1): 149-153. doi: 10.1007/s00216-006-0918-z
[29] Kuhn H R, Günther D. 2004. Laser ablation-ICP-MS: particle size dependent elemental composition studies on filter-collected and online measured aerosols from glass[J]. Journal of Analytical Atomic Spectrometry, 19(9): 1158-1164. doi: 10.1039/B404729J
[30] Liao J L, Sun X M, Li D F, Sa R NLu Y, Lin Z Y, Xu L, Zhan R Z, Pan Y G, Xu H F. 2019. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 512: 58-68. doi: 10.1016/j.chemgeo.2019.02.039
[31] Lichte F E. 1995. Determination of Elemental Content of Rocks by Laser Ablation Inductively Coupled Plasma Mass Spectrometry[J]. Analytical Chemistry, 67(14): 2479-2485. doi: 10.1021/ac00110a024
[32] Liu Y H, Xue D S, Li W J, Wang Z Q, Liang Y, Guo S, Wan B. 2024. Trace elements determination by femtosecond LA-ICP-MS of 10 mg extraterrestrial geological samples prepared as lithium borate glasses[J]. Journal of Analytical Atomic Spectrometry, 39(11): 2728-2736. doi: 10.1039/D4JA00275J
[33] Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q , Wang D B. 2009. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 51(1-2): 537-571.
[34] Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[35] Liu Y S, Hu Z C, Li M, Gao S. 2013. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4
[36] Münker C. 1998. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: source constraints and application of refined ICPMS techniques[J]. Chemical Geology, 144(1-2): 23-45. doi: 10.1016/S0009-2541(97)00105-8
[37] Norman M, Robinson P, Clark D. 2003. Major-and trace-element analysis of sulfide ores by Laser-ablation ICP-MS, solution ICP-MS and XRF: new data on international reference materials[J]. Canadian Mineralogist, 41(2): 293-305. doi: 10.2113/gscanmin.41.2.293
[38] Ødegård M, Dundas S H, Flem B, Grimstvedt A. 1998. Application of a double-focusing magnetic sector inductively coupled plasma mass spectrometer with laser ablation for the bulk analysis of rare earth elements in rocks fused with Li2B4O7[J]. Fresenius' Journal of Analytical Chemistry, 362(5): 477-482. doi: 10.1007/s002160051110
[39] Ødegård M, Hamester M. 1997. Preliminary Investigation into the Use of a High Resolution Inductively Coupled Plasma-Mass Spectrometer with Laser Ablation for Bulk Analysis of Geological Materials Fused with Li2B4O7[J]. Geostandards Newsletter, 21(2): 245-252. doi: 10.1111/j.1751-908X.1997.tb00673.x
[40] Perkins W T, Pearce N J G, Jeffries T E. 1993. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates[J]. Geochimica et Cosmochimica Acta, 57(2): 475-482. doi: 10.1016/0016-7037(93)90447-5
[41] Peters D, Pettke T. 2017. Evaluation of Major to Ultra Trace Element Bulk Rock Chemical Analysis of Nanoparticulate Pressed Powder Pellets by LA‐ICP‐MS[J]. Geostandards and Geoanalytical Research, 41(1): 5-28. doi: 10.1111/ggr.12125
[42] Rusk B. 2009. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues[J]. Economic Geology, 104(4): 601-602.
[43] Vikentiev I V, Abramova V D, Ivanova Y N, Tyukova E E, Kovalchuk E V, Bortnikov N S. 2016. Trace elements in pyrite from the Petropavlovsk gold–porphyry deposit (Polar Urals): Results of LA-ICP-MS analysis[J]. Doklady Earth Sciences, 470(1): 976-980. doi: 10.1134/S1028334X16090221
[44] Wang D, Qiu X F, Carlson R W. 2023. The Eoarchean Muzidian gneiss complex: Long-lived Hadean crustal components in the building of Archean continents[J]. Earth and Planetary Science Letters, 605: 118037. doi: 10.1016/j.jpgl.2023.118037
[45] Whitty-Léveillé L, Drouin E, Constantin M, Bazin C, Larivière D. 2016. Scandium analysis in silicon-containing minerals by inductively coupled plasma tandem mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 118: 112-118. doi: 10.1016/j.sab.2016.02.014
[46] Wu S T, Audétat A, Jochum K P, Wang H, Chen J Y, Stoll B, Zhang C, Bao Z A, Yang S Y, Li C F, Wang X F, Xu C X, Xu L, Huang C, Xie L W, Yang Y H, Yang J H. 2022. Three Natural Andesitic to Rhyolitic Glasses (OJY‐1, OH‐1, OA‐1) as Reference Materials for In Situ Microanalysis[J]. Geostandards and Geoanalytical Research, 46(4): 673-700. doi: 10.1111/ggr.12449
[47] Wu S T, Karius V, Schmidt B C, Simon, K, Worner G. 2018. Comparison of Ultrafine Powder Pellet and Flux‐free Fusion Glass for Bulk Analysis of Granitoids by Laser Ablation‐Inductively Coupled Plasma‐Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 42(4): 575-591. doi: 10.1111/ggr.12230
[48] Yang M, Yang Y H, Evans N J, Xie L W, Huang C, Wu S T, Yang J H, Wu F Y. 2020. Precise and Accurate Determination of Lu and Hf Contents, and Hf Isotopic Compositions in Chinese Rock Reference Materials by MC‐ICP‐MS[J]. Geostandards and Geoanalytical Research, 44(3): 553-565. doi: 10.1111/ggr.12325
[49] Yu Z S, Robinson P, McGoldrick P. 2001. An Evaluation of Methods for the Chemical Decomposition of Geological Materials for Trace Element Determination using ICP-MS[J]. Geostandards and Geoanalytical Research, 25(2-3): 199-217. doi: 10.1111/j.1751-908X.2001.tb00596.x
[50] Yuan C G, Liang P, Zhang Y Y. 2011. Determination of trace silver in environmental samples by room temperature ionic liquid-based preconcentration and flame atomic absorption spectrometry[J]. Microchimica Acta, 175(3-4): 333-339. doi: 10.1007/s00604-011-0677-1
[51] Zhang C X, Hu Z C, Zhang W, Liu Y S, Zong K Q, Li M, Chen H H, Hu S H. 2016. Green and Fast Laser Fusion Technique for Bulk Silicate Rock Analysis by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry[J]. Analytical Chemistry, 88(20): 10088-10094. doi: 10.1021/acs.analchem.6b02471
[52] Zhang S Y, Zhang H L, Hou Z H, Ionov D A, Huang F. 2019. Rapid Determination of Trace Element Compositions in Peridotites by LA‐ICP‐MS Using an Albite Fusion Method[J]. Geostandards and Geoanalytical Research, 43(1): 93-111. doi: 10.1111/ggr.12240
[53] Zhu L Y, Liu Y S, Hu Z C, Hu Q H, Tong X R, Zong K Q, Chen H H, Gao S. 2013. Simultaneous Determination of Major and Trace Elements in Fused Volcanic Rock Powders Using a Hermetic Vessel Heater and LA‐ICP‐MS[J]. Geostandards and Geoanalytical Research, 37(2): 207-229. doi: 10.1111/j.1751-908X.2012.00181.x
[54] Zou W W, Yue C L, Zhao Z L, Zhang Q J, Zhou L L, Xu Z F. 2018. Determination of silver in copper concentrate by microwave digestion-flame atomic absorption spectrometry[J]. Metallurgical Analysis, 38(9): 59-62.
-