Structural Exploration and Seismic Sand Liquefaction Assessment of North Juma River Alluvial Fan in the Eastern Piedmont of Taihang Mountains
-
摘要: 北拒马河冲积扇及邻近地区位于太行山东麓, 地表覆盖全新世(Qh)松散砂土与粉土, 该区域地下水埋深较浅, 潜在地震最大震级达6.5级, 在地震作用下存在发生砂土液化危险性。通过野外地质调查、工程地质钻探和高密度电阻率法勘探揭示北拒马河冲积扇地层结构特征。在此基础上, 采用原位标准贯入试验和室内动三轴试验评价北拒马河冲积扇饱和砂土和粉土的液化危险性。结果表明: (1)北拒马河冲积扇由三组沉积旋回组成: 第一组为分布于北拒马河南支古河道内的全新世河流相砂、砂砾石、砾石层; 第二组为埋深 15 m 左右的晚更新世—全新世冲洪积相沉积层, 上部为亚砂土, 下部为细、粉砂; 第三组为埋深15 m 以下的晚更新世洪积相沉积层, 上部为淤泥质亚黏土, 中部为亚砂土、细粉砂, 下部为卵砾石层。(2)北拒马河冲积扇饱和砂土与粉土存在液化危险性, 由标贯法液化判别结果可知, 冲积扇南缘砂土液化等级为轻微, 冲积扇东缘靠近涿州市区砂土液化等级为中等。(3)北拒马河冲积扇砂土的液化风险随震级与地震烈度增大而增大, 在近场6.5级地震作用下产生Ⅶ、Ⅷ度地震烈度时, 北拒马河冲积扇会发生砂土液化。Abstract: The North Juma River alluvial fan and its adjacent areas are located at the eastern piedmont of Taihang Mountains. The surface of this area is covered by Holocene loose sand and silt, and the groundwater depth is relatively shallow. This area is susceptible to earthquake with a maximum magnitude of 6.5. Sand liquefaction may occur due to an earthquake. Field geological survey, engineering geological drilling, and high-density resistivity methods are used to explore the stratigraphic structure characteristics of North Juma River alluvial fan.Accordingly, the liquefaction risk of saturated sand and silt in the North Juma River alluvial fan is assessed using in-situ standard penetration test and indoor dynamic triaxial test. Based on the findings of research:(1) The alluvial fan of the North Juma River is composed of three groups of sedimentary cycles: The first group is Holocene fluvial sand, sand gravel, and gravel stratum distributed in the paleochannel of the southern branch of the North Juma River; The second group is the Late Pleistocene to Holocene alluvial-proluvial facies sedimentary stratum with a buried depth of about 15 m. The upper part of the alluvial-proluvial facies sedimentary stratum is comprised of sub-sand while the lower part is comprised of fine, silt sand; The third group is the late Pleistocene proluvial facies sedimentary stratum with a buried depth of more than 15 m. The upper part of the proluvial facies sedimentary stratum is comprised of silty loam, the middle part is comprised of sandy soil and fine silt, and the lower part is comprised of pebbles. (2) There is a liquefaction risk of saturated sand and silty sand in North Juma River alluvial fan. Based on the liquefaction evaluation results of the standard penetration method, the sand liquefaction level on the southern margin of the alluvial fan is slight, and the eastern margin of the alluvial fan near Zhuozhou City is medium. (3) The liquefaction risk of sand in the alluvial fan of North Juma River increases with an increase in earthquake magnitude and intensity. When the earthquake intensity of Ⅶ a nd Ⅷ occurs due to a near-field earthquake of M6.5, sand liquefaction will occur in the alluvial fan of North Juma River.
-
-
蔡国军, 刘松玉, 童立元, 杜广印. 2008. 基于静力触探测试的国内外砂土液化判别方法[J]. 岩石力学与工程学报, 27(5):1019-1027.
曹振中, 侯龙清, 袁晓铭, 孙锐, 王维铭, 陈龙伟. 2010. 汶川8.0级地震液化震害及特征[J]. 岩土力学, 31(11):3549-3555.
崔红波. 2020. 拒马河流域径流特征分析[J]. 地下水, 42(4):151-153.
陈龙伟, 袁晓铭, 孙锐. 2013. 2011年新西兰Mw6.3地震液化及岩土震害述评[J]. 世界地震工程, 29(3): 1-9.
陈同之. 2014. 2011年新西兰地震液化特征及现有液化判别方法检验[D]. 哈尔滨: 中国地震局工程力学研究所.
丁志宏, 李伟, 赵勇刚. 2013. 近20年来拒马河流域土地利用变化及其驱动力研究[J]. 海河水利, (5): 27-29.
董林, 王兰民, 夏坤, 袁晓铭. 2015. 含细粒砂性土标贯液化判别方法改进研究[J]. 岩土工程学报, 37(12): 2320-2325.
方怡, 黄雅虹, 吕悦军, 张力方, 钱海涛. 2016. 液化规范判别与实际震害现象的差异对比--以唐山地震震害为例[J].震灾防御技术, 11(1): 76-85.
丰成君, 戚帮申, 王晓山, 张鹏, 孙明乾, 孟静, 谭成轩, 陈群策. 2019. 基于原地应力实测数据探讨华北典型强震区断裂活动危险性及其对雄安新区的影响[J]. 地学前缘, 26(4):170-190.
冯庆达. 2018. 拒马河流域新构造运动及其对地下水赋存规律的控制作用研究[D]. 青岛: 山东科技大学.
高振寰. 1984. 震害与地质条件[J]. 长春地质学院学报, (4):98-106.
宫猛, 郭蕾, 张素欣, 王晓山, 董博. 2016. 河北地区地震时空演化特征分析[J]. 华北地震科学, 34(4): 11-15.
郝兵, 任志善, 李从昀. 2019. 几种地震液化判别方法的对比[J].岩土工程技术, 33(5): 278-283.
黄文熙. 1962. 砂基和砂坡的液化研究[J]. 水利水电技术, (1):38-39.
黄雅虹, 吕悦军, 荣棉水, 方怡. 2012. 关于深层砂土液化判定方法的探讨--港珠澳特大桥水下隧道工程场地为例[J].岩石力学与工程学报, 31(4): 856-864.
柯瀚, 陈云敏, 周燕国, 张民强. 2004. 动态三轴试验确定砂土抗液化强度[J]. 土木工程学报, 37(9): 48-54.
李绍柄. 1990. 河北强震发生的地震地质条件与构造模式[J]. 长春地质学院学报, 20(2): 177-184.
李松林.1990. 动三轴试验的原理与方法[M]. 北京: 地质出版社: 63-72.
刘恢先.1985. 唐山大地震震害[M]. 北京: 地震出版社.
刘小丽, 刘红军, 贾永刚. 2007. 黄河三角洲饱和粉土层地震液化判别方法及液化特征研究[J]. 岩石力学与工程学报, 26(S1): 2981-2987.
苏经宇, 周锡元, 樊水荣, 高小旺. 1994. 土层地震液化的危险性分析[J]. 建筑科学, (1): 37-42.
孙丽娜, 齐玉妍, 金学申. 2017. 河北地区活断层潜在地震最大震级及危险性研究[J]. 地震, 37(2): 147-156.
王建华, 程国勇. 2005. 饱和砂土的剪切波速与抗液化强度相关性研究[J]. 岩土工程学报, 27(4): 369-373.
王景禄. 2020. 某公路场地砂土液化判别及预测分析[D]. 北京:中国地质大学(北京).
吴忱, 赵明轩. 1993. 拒马河下游河道变迁与地貌演变[J]. 地理学与国土研究, 9(4): 42-47.
温超, 蔡玲玲, 黎勇, 孟立朋, 周月玲, 张合, 郭秋娜. 2020. 河北中强地震序列类型统计及空间分布特征[J]. 华北地震科学, 38(4): 8-14.
谢定义.2011. 土动力学[M]. 北京: 高等教育出版社: 207.
杨凡. 2017. 河北及邻区地震烈度衰减关系研究[J]. 地震地磁观测与研究, 38(2): 98-103.
于仕达, 张延军, 李云峰. 2021. 安庆市某地区液化场地判别研究[J]. 世界地质, 40(1): 169-174.
周燕国, 谭晓明, 梁甜, 黄博, 凌道盛, 陈云敏. 2017. 利用地震动强度指标评价场地液化的离心模型试验研究[J]. 岩土力学, 38(7): 1869-1877.
周健, 陈小亮, 杨永香, 贾敏才. 2011. 饱和层状砂土液化特性的动三轴试验研究[J]. 岩土力学, 32(4): 967-972.
周永恒, 杨肖肖, 丰成君, 张鹏, 孟静, 谭成轩, 邓亚虹, 宋焱勋, 王继明. 2021. 北京平原区黄庄-高丽营断裂(房山-涞水段)第四纪活动特征的浅层综合探测证据[J]. 地球学报, 42(5): 677-689.
中国建筑科学研究院. 2010. 建筑抗震设计规范(GB50011-2010)[S]. 北京: 中国建筑工业出版社.
CAI Guo-jun, LIU Song-yu, TONG Li-yuan, DU Guang-yin. 2008.Evaluation of liquefaction of sandy soils based on cone penetration test[J]. Chinese Journal of Rock Mechanics and Engineering, 27(5): 1019-1027(in Chinese with English abstract).
CAO Zhen-zhong, HOU Long-qing, YUAN Xiao-ming, SUN Rui, WANG Wei-ming, CHEN Wei-long. 2010. Characteristics of liquefaction-induced damages during Wenchuan Ms 8.0 earthquake[J]. Rock and Soil Mechanics, 31(11):3549-3555(in Chinese with English abstract).
CETIN K O, YOUD T L, SEED R B, BRAY J D, STEWART J P, DURGUNOGLU H T, LETTIS W, YILMAZ M T. 2004.Liquefaction-induced lateral spreading at Izmit bay during the Kocaeli (Izmit)-Turkey earthquake[J]. Journal of Geotechnical and Geoenvironmental Engineering, 130(12): 1300-1313.
CUI Hong-bo. 2020. Analysis of runoff characteristics of Juma River basin[J]. Ground Water, 42(4): 151-153(in Chinese with English abstract).
CHEN Long-wei, YUAN Xiao-ming, SUN Rui. 2013. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 29(3): 1-9(in Chinese with English abstract).
CHENG Tong-zhi. 2014. Liquefaction characteristics of New Zealand 2011 earthquake and test of the existing liquefaction evaluation methods[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration(in Chinese with English abstract).
China Academy of Building Research. 2010. Code for seismic design of buildings(GB50011-2010)[S]. Beijing: China Architecture & Building Press(in Chinese).
DING Zhi-hong, LI Wei, ZHAO Yong-gang. 2013. Study on land utilization change and driving influence in Juma River Basin in recent 20 years[J]. Haihe Water Resources, (5): 27-29(in Chinese).
DONG Lin, WANG Lan-min, XIA Kun, YUAN Xiao-ming. 2015.Improvement of SPT-based liquefaction discrimination methods for fines-containing sandy soils[J]. Chinese Journal of Geotechnical Engineering, 37(12): 2320-2325(in Chinese with English abstract).
FANG Yi, HUANG Ya-hong, LV Yue-jun, ZHANG Li-fang, QIAN Hai-tao. 2016. The comparison of liquefaction between estimated by code and the earthquake damagetake-An example of the Tangshan Earthquake[J]. Technology for Earthquake Disaster Prevention, 11(1): 76-85(in Chinese with English abstract).
FENG Cheng-jun, QI Bang-shen, WANG Xiao-shan, ZHANG Peng, SUN Ming-qian, MENG Jing, TAN Cheng-xuan, Chen Qun-ce. 2019. Study of fault activity risk in typical strong seismic regions in northern China by in-situ stress measurements and the influence on the Xiong’an New Area[J]. Earth Science Frontiers, 26(4): 170-190(in Chinese with English abstract).
FENG Qing-da. 2018. Research on neothctonics of Juma River basin and its control effects on groundwater occurrence law[D]. Qingdao: Shandong University of Science and Technology(in Chinese with English abstract).
GAO Zhen-huan. 1984. Seismic disaster in relation with geological conditions[J]. Journal of Changchun University of Earth Science, (4): 98-106(in Chinese with English abstract).
GONG Meng, GUO Lei, ZHANG Su-xin, Wang Xiao-shan, Dong Bo. 2016. Study of seismic spatial-temporal evolution characteristic in Hebei and its adjacent area[J]. North China Earthquake Sciences, 34(4): 11-15(in Chinese with English abstract).
HAO Bing, REN Zhi-shan, LIN Cong-yun. 2019. Comparison of several discrimination criteria for seismic soil liquefaction[J].Geotechnical Engineering Technique, 33(5): 278-283(in Chinese with English abstract).
HUANG Wen-xi. 1962. Research on liquefaction of sand base and slope[J]. Water Resources and Hydropower Engineering, (1):38-39(in Chinese with English abstract).
HUANG Ya-hong, LU Yue-jun, RONG Mian-shui, FANG Yi.2012. Study of evaluation method of liquefaction for sandy soil in deep layer: taking undersea tunnel site of Hongkong-Zhuhai-Macao great bridge for example[J]. Chinese Journal of Rock Mechanics and Engineering, 31(4):856-864(in Chinese with English abstract).
KE Han, CHEN Yun-min, ZHOU Yan-guo, ZHANG Min-qiang.2004. Evalution of liquefaction resistance by means of dynamic triaxial tests with shear wave velocity measurement[J].China Civil Engineering Journal, 37(9): 48-54(in Chinese with English abstract).
KU C S, LEE D H, WU J H. 2004. Evaluation of soil liquefaction in the Chi-Chi, Taiwan earthquake using CPT[J]. Soil Dynamics and Earthquake Engineering, 24(9): 659-673.
LI Shao-bing. 1990. Seimogenic geological condition and tectonic model strong earthquake risk in Hebei Province[J]. Journal of Changchun University of Earth Science, 20(2): 177-184(in Chinese with English abstract).
LI Song-lin.1990. The principle and method of dynamic triaxialtest[M]. Beijing: Geological Publishing House: 63-72(in Chinese).
LIU Hui-xian.1985. The great Tangshan Earthquake of 1976[M].Beijing: Seismological Press(in Chinese).
LIU Xiao-li, LIU Hong-jun, JIA Yong-gang. 2007. Investigation on prediction methods and characteristics of earthquake-induced liquefaction of silty soil in the Yellow River delta[J]. Chinese Journal of Rock Mechanics and Engineering, 26(S1): 2981-2987(in Chinese with English abstract).
SEED H B, IDRISS I M. 1971. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundation Division, 97(9): 1249-1273.
SEED H B, IDRISS I M, ARANGO I. 1983. Evalution of liquefaction potential using field performance data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 109(3): 458-482.
SU Jing-yu, ZHOU Xi-yuan, FAN Shui-rong, Gao Xiao-wang.1994. Hazard analysis for seismic soil liquefaction[J]. Building Science, (1): 37-42(in Chinese with English abstract).
SUN Li-na, QI Yu-yan, JIN Xue-shen. 2017. Seismic risk and maximum magnitudes of potential earthquakes for active faults in Hebei Province[J]. Earthquake, 37(2): 147-156(in Chinese with English abstract).
WANG Jian-hua, CHENG Guo-yong. 2005. Study of correlation between the shear wave velocity and the liquefaction resistance of saturated sands[J]. Chinese Journal of Geotechnical Engineering, 27(4): 369-373(in Chinese with English abstract).
WANG Jing-lu. 2020. Discrimination and prediction analysis of sand liquefaction in a highway site[D]. Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).
WU Chen, ZHAO Ming-xuan. 1993. Juma downstream channel changeand geomorphic evolution[J]. Geography and Territorial Research, 9(4): 42-47(in Chinese).
WEN Chao, CAI Ling-ling, LI Yong, MENG Li-peng, ZHOU Yue-ling, ZHANG He, GUO Qiu-na. 2020. Statistical and spatial distribution characteristics of moderate and strong earthquakes qequences in Hebei Province[J]. North China Earthqauke Sciences, 38(4): 8-14(in Chinese with English abstract).
XIE Ding-yi.2011. Soil Dynamics[M]. Beijing: Higher Education Press: 207(in Chinese).
YANG Fan. 2017. Study on seismic intensity attenuation relationship in Hebei and adjacent areas[J]. Seismological and Geomagnetic Observation and Research, 38(2): 98-103(in Chinese with English abstract).
YU Shi-da, ZHANG Yan-jun, LI Yun-feng. 2021. Identification of liquefaction site in an area of Anqing[J]. Global Geology, 40(1): 169-174(in Chinese with English abstract).
ZHOU Yan-guo, TAN Xiao-ming, LIANG Tian, HUANG Bo, LING Dao-sheng, CHEN Yun-min. 2017. Evaluation of soil liquefaction by ground motion intensity index by centrifuge model test[J]. Rock and Soil Mechanics, 38(7): 1869-1877(in Chinese with English abstract).
ZHOU Jian, CHEN Xiao-liang, YANG Yong-xiang, JIA Min-cai.2011. Study of liquefaction characteristics of saturated stratified sands by dynamic triaxial test[J]. Rock and Soil Mechanics, 32(4): 967-972(in Chinese with English abstract).
ZHOU Yong-heng, YANG Xiao-xiao, FENG Cheng-jun, ZHANG Peng, MENG Jing, TAN Cheng-xuan, DENG Ya-hong, SONG Yan-xun, WANG Ji-ming. 2021. Evidence of shallow synthetic exploration of Quaternary activity characteristics along Fangshan-Laishui section of Huangzhuang-Gaoliying fault in Beijing Plain[J]. Acta Geoscientica Sinica, 42(5):677-689(in Chinese with English abstract)
-
计量
- 文章访问数: 112
- PDF下载数: 57
- 施引文献: 0

下载: