Progress in the Application of Orbitrap Mass Spectrometry in the Characterization of Dissolved Organic Matter in Water
-
摘要: 溶解性有机质(Dissolved Organic Matter, DOM)在水生生态环境中广泛存在, 影响着水环境中多种物质的生物地球化学性质。分析其组成与含量具有重要的生态环境意义, 是生态环境科学领域研究的热点。溶解性有机质组成非常复杂, 其分子组成的解析一直是难题。近年来, 具有高分辨率、高灵敏度、高通量、高扫描速率等特性的静电场轨道阱质谱技术, 结合计算机编程技术、可视化技术对 DOM 分子组成分布特征进行表征, 可大幅提升对DOM的解析能力。本文总结了DOM的高分辨质谱数据表达方法, 综述了静电场轨道阱质谱技术的发展及其表征水体中DOM的应用现状, 并对未来研究进行展望。Abstract: Dissolved organic matter (DOM) exists widely in the aquatic ecological environment and has a significant influence on the biogeochemical properties of many substances. Its composition and content have important ecological and environmental significance and has been a hot spot in ecological and environmental science research. The composition of DOM is complex, and its molecular composition analysis has always been a challenge. In recent years, Orbitrap mass spectrometry (Orbitrap MS), capable of high resolution, high sensitivity, high throughput, and high scanning rate, combined with computer programming technology and visualization technology could be used to characterize the molecular composition and distribution of DOM, greatly improving the capabilities of DOM. In this paper, the explanation methods of DOM high-resolution MS data are summarized, the Orbitrap MS technology and its application status in characterization of DOM in water are reviewed, and the prospects for future developments are analyzed.
-
-
曹静祥, 孙淑庄, 龙凌燕. 1993. 土壤 pH与腐殖质对水溶性硒影响的研究[J]. 中国地方病防治杂志, 4(2): 74-75, 77, 127.
韩立新, 曾宪成. 2009. 腐植酸与硒[J]. 腐植酸, 4(5): 42-44, 52.
李超群, 刘立平, 郭斌, 赵锦华, 任颖俊, 肖志勇. 2018. 土壤有机质分析技术和应用[J]. 农业科学, 8(6): 635-644.
李利杰. 2019. 天然水体可溶有机质分子组成与分子结构分析方法与应用[D]. 北京: 中国石油大学.
栗则, 吴百春, 张晓飞, 李兴春. 2018. 静电场轨道阱质谱在水质污染物检测中的应用[J]. 分析试验室, 37(2): 217-221.
楼涛, 陈国华, 谢会祥, 张永. 2004. 腐植质与有机污染物作用研究进展[J]. 海洋环境科学, 4(3): 71-76.
王翔, 罗艳丽, 邓雯文, 戴志鹏. 2020. 新疆奎屯地区高砷地下水 DOM 三维荧光特征[J]. 中国环境科学, 40(11):4974-4981.
王婧, 李海蓉, 杨林生. 2020. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 39(10):1677-1686.
吴丰昌, 王立英, 黎文, 张润宇, 傅平青, 廖海清, 白英臣, 郭建阳, 王静. 2008. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 4(1): 1-12.
谢冰心, 王姝, 孙辉, 陈玉雯, 范诗雨, 李鑫. 2020. 溶解性有机质对持久性有机污染物环境行为的影响研究进展[J]. 环境污染与防治, 42(12): 1563-1568.
张博, 高建文, 范绍锦, 王书航, 郑朔方, 姜霞. 2020. 南湖水系溶解性有机质来源及时空分布特征[J]. 环境工程技术学报, 10(6): 912-919.
中国科学院地理研究所环境与地方病研究组. 1988. 我国低硒带和克山病、大骨节病病因研究[J]. 中国科学院院刊, 4(1):54-60.
AGUILAR-ALARCÓN P, GONZALEZ S V, SIMONSEN M A, BORRERO-SANTIAGO A R, SANCHÍS J, MERIAC A, KOLAREVIC J, ASIMAKOPOULOS A G, MIKKELSEN Ø.2020. Characterizing changes of dissolved organic matter composition with the use of distinct feeds in recirculating aquaculture systems via high-resolution mass spectrometry[J].Science of the Total Environment, 749: 142326.
BIRDWELL J E, ENGEL A S. 2010. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy[J]. Organic Geochemistry, 41(3): 270-280.
BLACKBURN J W T, KEW W, GRAHAM M C, UHRÍN D. 2017.Laser desorption/ionization coupled to FTICR mass spectrometry for studies of natural organic matter[J]. Analytical Chemistry, 89(8): 4382-4386.
CAO Jing-xiang, SUN Shu-zhuang, LONG Ling-yan. 1993. The effect of pH of soil and humus on the water soluble sleenate[J]. Chinese Journal of Control of Endemic Disease, 4(2): 74-75, 77, 127(in Chinese with English abstract).
COOK R D, LIN Y H, PENG Z Y, BOONE E, CHU R K, DUKETT J E, GUNSCH M J, ZHANG W L, TOLIC N, LASKIN A, PRATT K A. 2017. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water[J]. Atmospheric Chemistry and Physics, 17(24): 15167-15180.
CORTÉS-FRANCISCO N, CAIXACH J. 2013. Molecular characterization of dissolved organic matter through a desalination process by high resolution mass spectrometry[J]. Environmental Science & Technology, 47(17): 9619-9627.
CORTÉS-FRANCISCO N, CAIXACH J. 2015. Fragmentation studies for the structural characterization of marine dissolved organic matter[J]. Analytical and Bioanalytical Chemistry, 407(9): 2455-2462.
CORTÉS-FRANCISCO N, FLORES C, MOYANO E, CAIXACH J.2011. Accurate mass measurements and ultrahigh-resolution:evaluation of different mass spectrometers for daily routine analysis of small molecules in negative electrospray ionization mode[J]. Analytical and Bioanalytical Chemistry, 400(10): 3595-3606.
RESEARCH TEAM OF ENVIRONMENTAL AND ENDEMIC DISEASES, INSTITUTE OF GEOGRAPHY, CHINESE ACADEMY OF SCIENCES. 1988. Study on the low selenium band and etiology of Keshan disease and Kashin-Beck disease in China[J]. Bulletin of the Chinese Academy of Sciences, 4(1): 54-60(in Chinese).
FARRÉ M J, JAÉN-GIL A, HAWKES J, PETROVIC M, CATALÁN N. 2019. Orbitrap molecular fingerprint of dissolved organic matter in natural waters and its relationship with NDMA formation potential[J]. Science of the Total Environment, 670: 1019-1027.
FIEVRE A, SOLOUKI T, MARSHALL A G, COOPER W T. 1997.High-resolution fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids by laser desorption/ionization and electrospray ionization[J]. Energy & Fuels, 11(3): 554-560.
FOX P M, NICO P S, TFAILY M M, HECKMAN K, DAVIS J A.2017. Characterization of natural organic matter in low-carbon sediments: Extraction and analytical approaches[J]. Organic Geochemistry, 114: 12-22.
FU Q L, FUJII M, RIEDEL T. 2020. Development and comparison of formula assignment algorithms for ultrahigh-resolution mass spectra of natural organic matter[J]. Analytica Chimica Acta, 1125: 247-257.
HAN Li-xin, ZENG Xian-cheng. 2009. Humus and selenium[J].Humic Acid, 4(5): 42-44+52(in Chinese).
HAWKES J A, D'ANDRILLI J, AGAR J N, BARROW M P, BERG S M, CATALÁN N, CHEN H M, CHU R K, COLE R B, DITTMAR T, GAVARD R, GLEIXNER G, HATCHER P G, HE C, HESS N J, HUTCHINS R H S, IJAZ A, JONES H E, KEW W, KHAKSARI M, LOZANO D C P, LV J T, MAZZOLENI L R, NORIEGA-ORTEGA B E, OSTERHOLZ H, RADOMAN N, REMUCAL C K, SCHMITT N D, SCHUM S K, SHI Q, SIMON C, SINGER G, SLEIGHTER R L, STUBBINS A, THOMAS M J, TOLIC N, ZHANG S Z, ZITO P, PODGORSKI D C. 2020. An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?[J]. Limnology and Oceanography: Methods, 18(6): 235-258.
HAWKES J A, DITTMAR T, PATRIARCA C, TRANVIK L, BERQUIST J. 2016. Evaluation of the orbitrap mass spectrometer for the molecular fingerprinting analysis of natural dissolved organic matter[J]. Analytical Chemistry, 88(15):7698-7704.
HERTKORN N, FROMMBERGER M, WITT M, KOAH B P, SCHMITT-KOPPLIN P, PERDUE E M. 2008. Natural organic matter and the event horizon of mass spectrometry[J].Analytical chemistry, 80(23): 8908-8919.
HERTKORN N, RUECKER C, MERINGER M, GUGISCH R, FROMMBERGER M, PERDUE E M, WITT M, SCHMITT-KOPPLIN P. 2007. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems[J]. Analytical and Bioanalytical Chemistry, 389(5): 1311-1327.
HERZSPRUNG P, HERTKORN N, VON TÜMPLING W, HARIR M, FRIESE K, SCHMITT-KOPPLIN P. 2014. Understanding molecular formula assignment of Fourier transform ion cyclotron resonance mass spectrometry data of natural organic matter from a chemical point of view[J]. Analytical and Bioanalytical Chemistry, 406(30): 7977-7987.
HOCKADAY W C, PURCELL J M, MARSHALL A G, BALDOCK J A, HATCHER P G. 2009. Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment[J].Limnology and Oceanography: Methods, 7(1): 81-95.
HU Q Z, NOLL R J, LI H Y, MAKAROV A, HARDMAN M, COOKS R G. 2005. The Orbitrap: a new mass spectrometer[J].Journal of Mass Spectrom, 40(4): 430-443.
KASUGA I, YUTHAWONG V, KURISU F, FURUMAI H. 2020.Molecular-level comparison of dissolved organic matter in 11 major lakes in Japan by Orbitrap mass spectrometry[J]. Water Supply, 20(4): 1271-1280.
KENDRICK E. 1963. A Mass Scale Based on CH2= 14.0000 for High Resolution Mass Spectrometry of Organic Compounds[J]. Analytical Chemistry, 35(13): 2146-2154.
KIM S, KRAMER R W, HATCHER P G. 2003. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram[J]. Analytical chemistry, 75(20): 5336-5344.
KOCH B P, DITTMAR T, WITT M, KATTNER G. 2007. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter[J]. Analytical Chemistry, 79(4): 1758-1763.
KUJAWINSKI E B. 2002. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS): characterization of complex environmental mixtures[J].Environmental Forensics, 3(3-4): 207-216.
KUJAWINSKI E B, BEHN M D. 2006. Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter[J]. Analytical chemistry, 78(13): 4363-4373.
LEEFMANN T, FRICKENHAUS S, KOCH B P. 2019. UltraMassExplorer: a browser-based application for the evaluation of high-resolution mass spectrometric data[J]. Rapid Communications in Mass Spectrometry, 33(2): 193-202.
LI Chao-qun, LIU Li-ping, GUO Bin, ZHAO Jin-hua, REN Ying-jun, XIAO Zhi-yong. 2018. Techinique and application for determinaton of soil organic matter[J]. Hans Journal of Agricultural Science, 8(6): 635-644(in Chinese with English abstract).
LI Li-jie. 2019. Molecular composition and structure analysis of dissolved organic matter in natural water: Methodology and application[D]. Beijing: China Uniersity of Petroleum(in Chinese with English abstract).
LI Ze, WU Bai-chun, ZHANG Xiao-fei, LI Xing-chun. 2018. The application of orbitrap mass spectrometry in organic water pollutants analysis[J]. Chinese Journal Analysis Laboratory, 37(2): 217-221(in Chinese with English abstract).
LOU Tao, CHEN Guo-hua, XIE Hui-xiang, ZHANG Yong. 2004.Advances of the act of humic substance with the organic pollutants[J]. Marine Environmental Science, 4(3): 71-76(in Chinese with English abstract).
LU K J, GARDNER W S, LIU Z F. 2018. Molecular structure characterization of riverine and coastal dissolved organic matter with ion mobility quadrupole time-of-flight LCMS (IM Q-TOF LCMS)[J]. Environmental Science & Technology, 52(13): 7182-7191.
MAKAROV A, DENISOV E, KHOLOMEEV A, BALSCHUN W, LANGE O, STRUPAT K, HORNING S. 2006. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer[J]. Analytical chemistry, 78(7): 2113-2120.
MAKAROV A, DENISOV E, LANGE O, HORNING S. 2006.Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer[J]. Journal of the American Society for Mass Spectrommetry, 17(7): 977-982.
MANGAL V, DEGASPARRO S, BERESFORD D V, GUÉGUEN C. 2020. Linking molecular and optical properties of dissolved organic matter across a soil-water interface on Akimiski Island (Nunavut, Canada)[J]. Science of the Total Environment, 704: 135415.
MANGAL V, STOCK N L, GUÉGUEN C. 2016. Molecular characterization of phytoplankton dissolved organic matter (DOM)and sulfur components using high resolution Orbitrap mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 408(7): 1891-1900.
MELENDEZ-PEREZ J J, MARTÍNEZ-MEJÍA M J, AWAN A T, FADINI P S, MOZETO A A, EBERLIN M N. 2016. Characterization and comparison of riverine, lacustrine, marine and estuarine dissolved organic matter by ultra-high resolution and accuracy Fourier transform mass spectrometry[J]. Organic Geochemistry, 101: 99-107.
PAN Q, ZHUO X C, HE C, ZHANG Y H, SHI Q. 2020. Validation and evaluation of high-resolution orbitrap mass spectrometry on molecular characterization of dissolved organic matter[J].ACS Omega, 5(10): 5372-5379.
PATRIARCA C, BERGQUIST J, SJÖBERG P J R, TRANVIK L, HAWKES J A. 2018. Online HPLC-ESI-HRMS method for the analysis and comparison of different dissolved organic matter samples[J]. Environmental Science & Technology, 52(4): 2091-2099.
PEMBERTON J A, LLOYD C E M, ARTHUR C J, JOHNES P J, DICKINSON M, CHARLTON A J, EVERSHED R P. 2020.Untargeted characterisation of dissolved organic matter contributions to rivers from anthropogenic point sources using direct-infusion and high-performance liquid chromatography/Orbitrap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 34(S4): e8618.
PHUNGSAI P, KURISU F, KASUGA I, FURUMAI H. 2016.Molecular characterization of low molecular weight dissolved organic matter in water reclamation processes using Orbitrap mass spectrometry[J]. Water Research, 100: 526-536.
PHUNGSAI P, KURISU F, KASUGA I, FURUMAI H. 2018.Changes in dissolved organic matter composition and disinfection byproduct precursors in advanced drinking water treatment processes[J]. Environmental Science & Technology, 52(6): 3392-3401.
PHUNGSAI P, KURISU F, KASUGA I, FURUMAI H. 2019.Molecular characteristics of dissolved organic matter transformed by O3 and O3/H2O2 treatments and the effects on formation of unknown disinfection by-products[J]. Water Research, 159: 214-222.
PHUNGSAI P, KURISU F, KASUGA I, FURUMAI H. 2021.Changes in dissolved organic matter during water treatment by sequential solid-phase extraction and unknown screening analysis[J]. Chemosphere, 263: 128278.
RAEKE J, LECHTENFELD O J, SEIWERT B, MEIER T, RIEMENSCHNEIDER C, REEMTSMA T. 2017. Photochemically induced bound residue formation of carbamazepine with dissolved organic matter[J]. Environmental Science & Technology, 51(10): 5523-5530.
REMUCAL C K, CORY R M, SANDER M, MCNEILL K. 2012.Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry[J]. Environmental Science & Technology, 46(17): 9350-9359.
RIEDEL T, DITTMAR T. 2014. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 86(16): 8376-8382.
RILEY S M, AHOOR D C, REGNERY J, CATH T Y. 2018.Tracking oil and gas wastewater-derived organic matter in a hybrid biofilter membrane treatment system: A multi-analytical approach[J]. Science of the Total Environment, 613-614: 208-217.
SANCHÍS J, JAÉN-GIL A, GAGO-FERRERO P, MUNTHALI E, FARRÉ M J. 2020. Characterization of organic matter by HRMS in surface waters: Effects of chlorination on molecular fingerprints and correlation with DBP formation potential[J].Water Research, 176: 115743.
SIMON C, ROTH V N, DITTMAR T, GLEIXNER G. 2018. Molecular Signals of Heterogeneous Terrestrial Environments Identified in Dissolved Organic Matter: A Comparative Analysis of Orbitrap and Ion Cyclotron Resonance Mass Spectrometers[J]. Frontiers in Earth Science, 6: 00138.
TREMBLAY L B, DITTMAR T, MARSHALL A G, COOPER W J, COOPER W T. 2007. Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy[J]. Marine Chemistry, 105(1-2): 15-29.
WANG Xiang, LUO Yan-li, DENG Wen-wen, DAI Zhi-peng. 2020.The 3D-EEM characteristics of DOM in high arsenic groundwater of kuitun, Xinjiang[J]. China Environmental Science, 40(11): 4974-4981(in Chinese with English abstract).
WANG Jing, LI Hai-rong, YANG Lin-sheng. 2020. Selenium levels in the environment, food, and human hair in Kashin-Beck Disease endemic areas of the Qinghai-Xizang Plateau[J]. Progress in Geography, 39(10): 1677-1686(in Chinese with English abstract).
WU Feng-chang, WANG Li-ying, LI Wen, ZHANG Run-yu, FU Ping-qing, LIAO Hai-qing, BAI Ying-chen, GUO Jian-yang, WANG Jing. 2008. Natural organic matter and its significance in terrestrial surface environment[J]. Journal of Lake Sciences, 4(1): 1-12(in Chinese with English abstract).
WÜNSCH U J, HAWKES J A. 2020. Mathematical chromatography deciphers the molecular fingerprints of dissolved organic matter[J]. Analyst, 145(5): 1789-1800.
XIE Bing-xin, WANG Shu, SUN Hui, CHEN Yu-wen, FAN Shi-yu, LI Xin. 2020. Impacts of dissolved organic matter on the environmental behavior of persistent organic pollutants: a review[J]. Environmental Pollution & Control, 42(12):1563-1568(in Chinese with English abstract).
YASSINE M M, HARIR M, DABEK-ZLOTORZYNSKA E, SCHMITT-KOPPLIN P. 2014. Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach[J].Rapid Communications in Mass Spectrometry, 28(22):2445-2454.
YUTHAWONG V, KASUGA I, KURISU F, FURUMAI H. 2020.Application of Orbitrap mass spectrometry to investigate seasonal variations of dissolved organic matter composition in a eutrophic lake in Japan[J]. Environmental Science: Water Research & Technology, 6(7): 1816-1827.
ZHANG Bo, GAO Jian-wen, FAN Shao-jin, WANG Shu-hang, ZHENG Shuo-fang, JIANG Xia. 2020. Origin and spatial-temporal distribution characteristics of dissolved organic matter in Nanhu Lake water system[J]. Journal of Environmental Engineering Technology, 10(6): 912-919(in Chinese with English abstract).
ZHANG L, LI A, LU Y F, YAN L, ZHONG S, DENG C L. 2009.Characterization and removal of dissolved organic matter(DOM) from landfill leachate rejected by nanofiltration[J].Waste Management, 29(3): 1035-1040.
ZHANG X X, CHEN Z L, HUO X Y, KANG J, ZHAO S X, PENG Y T, DENG F X, SHEN J M, CHU W. 2021. Application of Fourier transform ion cyclotron resonance mass spectrometry in deciphering molecular composition of soil organic matter:A review[J]. Science of the Total Environment, 756: 144140.
ZHUROV K O, KOZHINOV A N, TSYBIN Y O. 2013. Evaluation of high-field orbitrap fourier transform mass spectrometer for petroleomics[J]. Energy & Fuels, 27(6): 2974-2983.
ZUBAREV R A, MAKAROV A. 2013. Orbitrap mass spectrometry[J]. Analytical Chemistry, 85(11): 5288-5296.
-
计量
- 文章访问数: 78
- PDF下载数: 260
- 施引文献: 0

下载: