静电场轨道阱质谱在水中溶解性有机质表征中的应用进展

王书越, 何洪源, 饶竹, 石喆元, 孟建卫, 王立平, 李开开. 2022. 静电场轨道阱质谱在水中溶解性有机质表征中的应用进展[J]. 地球学报, 43(1): 101-109. doi: 10.3975/cagsb.2021.121301
引用本文: 王书越, 何洪源, 饶竹, 石喆元, 孟建卫, 王立平, 李开开. 2022. 静电场轨道阱质谱在水中溶解性有机质表征中的应用进展[J]. 地球学报, 43(1): 101-109. doi: 10.3975/cagsb.2021.121301
WANG Shu-yue, HE Hong-yuan, RAO Zhu, SHI Zhe-yuan, MENG Jian-wei, WANG Li-ping, LI Kai-kai. 2022. Progress in the Application of Orbitrap Mass Spectrometry in the Characterization of Dissolved Organic Matter in Water. Acta Geoscientica Sinica, 43(1): 101-109. doi: 10.3975/cagsb.2021.121301
Citation: WANG Shu-yue, HE Hong-yuan, RAO Zhu, SHI Zhe-yuan, MENG Jian-wei, WANG Li-ping, LI Kai-kai. 2022. Progress in the Application of Orbitrap Mass Spectrometry in the Characterization of Dissolved Organic Matter in Water. Acta Geoscientica Sinica, 43(1): 101-109. doi: 10.3975/cagsb.2021.121301

静电场轨道阱质谱在水中溶解性有机质表征中的应用进展

  • 基金项目:

    本文由中国地质调查局地质调查项目“重点地区健康地质调查试点”(编号: DD20211414)、“水样测试分析质量控制”(编号:DD20190323)、中央高校基本科研业务费项目(编号: 2021JKF201)和上海市现场物证重点实验室开放课题(编号: 2021XCWZK05)联合资助

详细信息
    作者简介: 王书越, 女, 1996年生。硕士研究生。刑事科学技术专业, 主要从事地下水溶解性有机质研究。通讯地址: 100038, 北京市西城区中国人民公安大学木樨地校区。E-mail: 835769986@qq.com
    通讯作者: 何洪源, 女, 1965年生。博士, 教授。主要从事法庭毒物分析。通讯地址: 100038, 北京西城区木樨地南里甲1号中国人民公安大学。E-mail: 13311296819@189.cn
  • 中图分类号: X1; O657.6

Progress in the Application of Orbitrap Mass Spectrometry in the Characterization of Dissolved Organic Matter in Water

More Information
    Corresponding author: HE Hong-yuan
  • 溶解性有机质(Dissolved Organic Matter, DOM)在水生生态环境中广泛存在, 影响着水环境中多种物质的生物地球化学性质。分析其组成与含量具有重要的生态环境意义, 是生态环境科学领域研究的热点。溶解性有机质组成非常复杂, 其分子组成的解析一直是难题。近年来, 具有高分辨率、高灵敏度、高通量、高扫描速率等特性的静电场轨道阱质谱技术, 结合计算机编程技术、可视化技术对 DOM 分子组成分布特征进行表征, 可大幅提升对DOM的解析能力。本文总结了DOM的高分辨质谱数据表达方法, 综述了静电场轨道阱质谱技术的发展及其表征水体中DOM的应用现状, 并对未来研究进行展望。
  • 加载中
  • 曹静祥, 孙淑庄, 龙凌燕. 1993. 土壤 pH与腐殖质对水溶性硒影响的研究[J]. 中国地方病防治杂志, 4(2): 74-75, 77, 127.

    韩立新, 曾宪成. 2009. 腐植酸与硒[J]. 腐植酸, 4(5): 42-44, 52.

    李超群, 刘立平, 郭斌, 赵锦华, 任颖俊, 肖志勇. 2018. 土壤有机质分析技术和应用[J]. 农业科学, 8(6): 635-644.

    李利杰. 2019. 天然水体可溶有机质分子组成与分子结构分析方法与应用[D]. 北京: 中国石油大学.

    栗则, 吴百春, 张晓飞, 李兴春. 2018. 静电场轨道阱质谱在水质污染物检测中的应用[J]. 分析试验室, 37(2): 217-221.

    楼涛, 陈国华, 谢会祥, 张永. 2004. 腐植质与有机污染物作用研究进展[J]. 海洋环境科学, 4(3): 71-76.

    王翔, 罗艳丽, 邓雯文, 戴志鹏. 2020. 新疆奎屯地区高砷地下水 DOM 三维荧光特征[J]. 中国环境科学, 40(11):4974-4981.

    王婧, 李海蓉, 杨林生. 2020. 青藏高原大骨节病流行区环境、食物及人群硒水平研究[J]. 地理科学进展, 39(10):1677-1686.

    吴丰昌, 王立英, 黎文, 张润宇, 傅平青, 廖海清, 白英臣, 郭建阳, 王静. 2008. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 4(1): 1-12.

    谢冰心, 王姝, 孙辉, 陈玉雯, 范诗雨, 李鑫. 2020. 溶解性有机质对持久性有机污染物环境行为的影响研究进展[J]. 环境污染与防治, 42(12): 1563-1568.

    张博, 高建文, 范绍锦, 王书航, 郑朔方, 姜霞. 2020. 南湖水系溶解性有机质来源及时空分布特征[J]. 环境工程技术学报, 10(6): 912-919.

    中国科学院地理研究所环境与地方病研究组. 1988. 我国低硒带和克山病、大骨节病病因研究[J]. 中国科学院院刊, 4(1):54-60.

    AGUILAR-ALARCÓN P, GONZALEZ S V, SIMONSEN M A, BORRERO-SANTIAGO A R, SANCHÍS J, MERIAC A, KOLAREVIC J, ASIMAKOPOULOS A G, MIKKELSEN Ø.2020. Characterizing changes of dissolved organic matter composition with the use of distinct feeds in recirculating aquaculture systems via high-resolution mass spectrometry[J].Science of the Total Environment, 749: 142326.

    BIRDWELL J E, ENGEL A S. 2010. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy[J]. Organic Geochemistry, 41(3): 270-280.

    BLACKBURN J W T, KEW W, GRAHAM M C, UHRÍN D. 2017.Laser desorption/ionization coupled to FTICR mass spectrometry for studies of natural organic matter[J]. Analytical Chemistry, 89(8): 4382-4386.

    CAO Jing-xiang, SUN Shu-zhuang, LONG Ling-yan. 1993. The effect of pH of soil and humus on the water soluble sleenate[J]. Chinese Journal of Control of Endemic Disease, 4(2): 74-75, 77, 127(in Chinese with English abstract).

    COOK R D, LIN Y H, PENG Z Y, BOONE E, CHU R K, DUKETT J E, GUNSCH M J, ZHANG W L, TOLIC N, LASKIN A, PRATT K A. 2017. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water[J]. Atmospheric Chemistry and Physics, 17(24): 15167-15180.

    CORTÉS-FRANCISCO N, CAIXACH J. 2013. Molecular characterization of dissolved organic matter through a desalination process by high resolution mass spectrometry[J]. Environmental Science & Technology, 47(17): 9619-9627.

    CORTÉS-FRANCISCO N, CAIXACH J. 2015. Fragmentation studies for the structural characterization of marine dissolved organic matter[J]. Analytical and Bioanalytical Chemistry, 407(9): 2455-2462.

    CORTÉS-FRANCISCO N, FLORES C, MOYANO E, CAIXACH J.2011. Accurate mass measurements and ultrahigh-resolution:evaluation of different mass spectrometers for daily routine analysis of small molecules in negative electrospray ionization mode[J]. Analytical and Bioanalytical Chemistry, 400(10): 3595-3606.

    RESEARCH TEAM OF ENVIRONMENTAL AND ENDEMIC DISEASES, INSTITUTE OF GEOGRAPHY, CHINESE ACADEMY OF SCIENCES. 1988. Study on the low selenium band and etiology of Keshan disease and Kashin-Beck disease in China[J]. Bulletin of the Chinese Academy of Sciences, 4(1): 54-60(in Chinese).

    FARRÉ M J, JAÉN-GIL A, HAWKES J, PETROVIC M, CATALÁN N. 2019. Orbitrap molecular fingerprint of dissolved organic matter in natural waters and its relationship with NDMA formation potential[J]. Science of the Total Environment, 670: 1019-1027.

    FIEVRE A, SOLOUKI T, MARSHALL A G, COOPER W T. 1997.High-resolution fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids by laser desorption/ionization and electrospray ionization[J]. Energy & Fuels, 11(3): 554-560.

    FOX P M, NICO P S, TFAILY M M, HECKMAN K, DAVIS J A.2017. Characterization of natural organic matter in low-carbon sediments: Extraction and analytical approaches[J]. Organic Geochemistry, 114: 12-22.

    FU Q L, FUJII M, RIEDEL T. 2020. Development and comparison of formula assignment algorithms for ultrahigh-resolution mass spectra of natural organic matter[J]. Analytica Chimica Acta, 1125: 247-257.

    HAN Li-xin, ZENG Xian-cheng. 2009. Humus and selenium[J].Humic Acid, 4(5): 42-44+52(in Chinese).

    HAWKES J A, D'ANDRILLI J, AGAR J N, BARROW M P, BERG S M, CATALÁN N, CHEN H M, CHU R K, COLE R B, DITTMAR T, GAVARD R, GLEIXNER G, HATCHER P G, HE C, HESS N J, HUTCHINS R H S, IJAZ A, JONES H E, KEW W, KHAKSARI M, LOZANO D C P, LV J T, MAZZOLENI L R, NORIEGA-ORTEGA B E, OSTERHOLZ H, RADOMAN N, REMUCAL C K, SCHMITT N D, SCHUM S K, SHI Q, SIMON C, SINGER G, SLEIGHTER R L, STUBBINS A, THOMAS M J, TOLIC N, ZHANG S Z, ZITO P, PODGORSKI D C. 2020. An international laboratory comparison of dissolved organic matter composition by high resolution mass spectrometry: Are we getting the same answer?[J]. Limnology and Oceanography: Methods, 18(6): 235-258.

    HAWKES J A, DITTMAR T, PATRIARCA C, TRANVIK L, BERQUIST J. 2016. Evaluation of the orbitrap mass spectrometer for the molecular fingerprinting analysis of natural dissolved organic matter[J]. Analytical Chemistry, 88(15):7698-7704.

    HERTKORN N, FROMMBERGER M, WITT M, KOAH B P, SCHMITT-KOPPLIN P, PERDUE E M. 2008. Natural organic matter and the event horizon of mass spectrometry[J].Analytical chemistry, 80(23): 8908-8919.

    HERTKORN N, RUECKER C, MERINGER M, GUGISCH R, FROMMBERGER M, PERDUE E M, WITT M, SCHMITT-KOPPLIN P. 2007. High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems[J]. Analytical and Bioanalytical Chemistry, 389(5): 1311-1327.

    HERZSPRUNG P, HERTKORN N, VON TÜMPLING W, HARIR M, FRIESE K, SCHMITT-KOPPLIN P. 2014. Understanding molecular formula assignment of Fourier transform ion cyclotron resonance mass spectrometry data of natural organic matter from a chemical point of view[J]. Analytical and Bioanalytical Chemistry, 406(30): 7977-7987.

    HOCKADAY W C, PURCELL J M, MARSHALL A G, BALDOCK J A, HATCHER P G. 2009. Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment[J].Limnology and Oceanography: Methods, 7(1): 81-95.

    HU Q Z, NOLL R J, LI H Y, MAKAROV A, HARDMAN M, COOKS R G. 2005. The Orbitrap: a new mass spectrometer[J].Journal of Mass Spectrom, 40(4): 430-443.

    KASUGA I, YUTHAWONG V, KURISU F, FURUMAI H. 2020.Molecular-level comparison of dissolved organic matter in 11 major lakes in Japan by Orbitrap mass spectrometry[J]. Water Supply, 20(4): 1271-1280.

    KENDRICK E. 1963. A Mass Scale Based on CH2= 14.0000 for High Resolution Mass Spectrometry of Organic Compounds[J]. Analytical Chemistry, 35(13): 2146-2154.

    KIM S, KRAMER R W, HATCHER P G. 2003. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram[J]. Analytical chemistry, 75(20): 5336-5344.

    KOCH B P, DITTMAR T, WITT M, KATTNER G. 2007. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter[J]. Analytical Chemistry, 79(4): 1758-1763.

    KUJAWINSKI E B. 2002. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS): characterization of complex environmental mixtures[J].Environmental Forensics, 3(3-4): 207-216.

    KUJAWINSKI E B, BEHN M D. 2006. Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter[J]. Analytical chemistry, 78(13): 4363-4373.

    LEEFMANN T, FRICKENHAUS S, KOCH B P. 2019. UltraMassExplorer: a browser-based application for the evaluation of high-resolution mass spectrometric data[J]. Rapid Communications in Mass Spectrometry, 33(2): 193-202.

    LI Chao-qun, LIU Li-ping, GUO Bin, ZHAO Jin-hua, REN Ying-jun, XIAO Zhi-yong. 2018. Techinique and application for determinaton of soil organic matter[J]. Hans Journal of Agricultural Science, 8(6): 635-644(in Chinese with English abstract).

    LI Li-jie. 2019. Molecular composition and structure analysis of dissolved organic matter in natural water: Methodology and application[D]. Beijing: China Uniersity of Petroleum(in Chinese with English abstract).

    LI Ze, WU Bai-chun, ZHANG Xiao-fei, LI Xing-chun. 2018. The application of orbitrap mass spectrometry in organic water pollutants analysis[J]. Chinese Journal Analysis Laboratory, 37(2): 217-221(in Chinese with English abstract).

    LOU Tao, CHEN Guo-hua, XIE Hui-xiang, ZHANG Yong. 2004.Advances of the act of humic substance with the organic pollutants[J]. Marine Environmental Science, 4(3): 71-76(in Chinese with English abstract).

    LU K J, GARDNER W S, LIU Z F. 2018. Molecular structure characterization of riverine and coastal dissolved organic matter with ion mobility quadrupole time-of-flight LCMS (IM Q-TOF LCMS)[J]. Environmental Science & Technology, 52(13): 7182-7191.

    MAKAROV A, DENISOV E, KHOLOMEEV A, BALSCHUN W, LANGE O, STRUPAT K, HORNING S. 2006. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer[J]. Analytical chemistry, 78(7): 2113-2120.

    MAKAROV A, DENISOV E, LANGE O, HORNING S. 2006.Dynamic range of mass accuracy in LTQ Orbitrap hybrid mass spectrometer[J]. Journal of the American Society for Mass Spectrommetry, 17(7): 977-982.

    MANGAL V, DEGASPARRO S, BERESFORD D V, GUÉGUEN C. 2020. Linking molecular and optical properties of dissolved organic matter across a soil-water interface on Akimiski Island (Nunavut, Canada)[J]. Science of the Total Environment, 704: 135415.

    MANGAL V, STOCK N L, GUÉGUEN C. 2016. Molecular characterization of phytoplankton dissolved organic matter (DOM)and sulfur components using high resolution Orbitrap mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 408(7): 1891-1900.

    MELENDEZ-PEREZ J J, MARTÍNEZ-MEJÍA M J, AWAN A T, FADINI P S, MOZETO A A, EBERLIN M N. 2016. Characterization and comparison of riverine, lacustrine, marine and estuarine dissolved organic matter by ultra-high resolution and accuracy Fourier transform mass spectrometry[J]. Organic Geochemistry, 101: 99-107.

    PAN Q, ZHUO X C, HE C, ZHANG Y H, SHI Q. 2020. Validation and evaluation of high-resolution orbitrap mass spectrometry on molecular characterization of dissolved organic matter[J].ACS Omega, 5(10): 5372-5379.

    PATRIARCA C, BERGQUIST J, SJÖBERG P J R, TRANVIK L, HAWKES J A. 2018. Online HPLC-ESI-HRMS method for the analysis and comparison of different dissolved organic matter samples[J]. Environmental Science & Technology, 52(4): 2091-2099.

    PEMBERTON J A, LLOYD C E M, ARTHUR C J, JOHNES P J, DICKINSON M, CHARLTON A J, EVERSHED R P. 2020.Untargeted characterisation of dissolved organic matter contributions to rivers from anthropogenic point sources using direct-infusion and high-performance liquid chromatography/Orbitrap mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 34(S4): e8618.

    PHUNGSAI P, KURISU F, KASUGA I, FURUMAI H. 2016.Molecular characterization of low molecular weight dissolved organic matter in water reclamation processes using Orbitrap mass spectrometry[J]. Water Research, 100: 526-536.

    PHUNGSAI P, KURISU F, KASUGA I, FURUMAI H. 2018.Changes in dissolved organic matter composition and disinfection byproduct precursors in advanced drinking water treatment processes[J]. Environmental Science & Technology, 52(6): 3392-3401.

    PHUNGSAI P, KURISU F, KASUGA I, FURUMAI H. 2019.Molecular characteristics of dissolved organic matter transformed by O3 and O3/H2O2 treatments and the effects on formation of unknown disinfection by-products[J]. Water Research, 159: 214-222.

    PHUNGSAI P, KURISU F, KASUGA I, FURUMAI H. 2021.Changes in dissolved organic matter during water treatment by sequential solid-phase extraction and unknown screening analysis[J]. Chemosphere, 263: 128278.

    RAEKE J, LECHTENFELD O J, SEIWERT B, MEIER T, RIEMENSCHNEIDER C, REEMTSMA T. 2017. Photochemically induced bound residue formation of carbamazepine with dissolved organic matter[J]. Environmental Science & Technology, 51(10): 5523-5530.

    REMUCAL C K, CORY R M, SANDER M, MCNEILL K. 2012.Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry[J]. Environmental Science & Technology, 46(17): 9350-9359.

    RIEDEL T, DITTMAR T. 2014. A method detection limit for the analysis of natural organic matter via Fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 86(16): 8376-8382.

    RILEY S M, AHOOR D C, REGNERY J, CATH T Y. 2018.Tracking oil and gas wastewater-derived organic matter in a hybrid biofilter membrane treatment system: A multi-analytical approach[J]. Science of the Total Environment, 613-614: 208-217.

    SANCHÍS J, JAÉN-GIL A, GAGO-FERRERO P, MUNTHALI E, FARRÉ M J. 2020. Characterization of organic matter by HRMS in surface waters: Effects of chlorination on molecular fingerprints and correlation with DBP formation potential[J].Water Research, 176: 115743.

    SIMON C, ROTH V N, DITTMAR T, GLEIXNER G. 2018. Molecular Signals of Heterogeneous Terrestrial Environments Identified in Dissolved Organic Matter: A Comparative Analysis of Orbitrap and Ion Cyclotron Resonance Mass Spectrometers[J]. Frontiers in Earth Science, 6: 00138.

    TREMBLAY L B, DITTMAR T, MARSHALL A G, COOPER W J, COOPER W T. 2007. Molecular characterization of dissolved organic matter in a North Brazilian mangrove porewater and mangrove-fringed estuaries by ultrahigh resolution Fourier Transform-Ion Cyclotron Resonance mass spectrometry and excitation/emission spectroscopy[J]. Marine Chemistry, 105(1-2): 15-29.

    WANG Xiang, LUO Yan-li, DENG Wen-wen, DAI Zhi-peng. 2020.The 3D-EEM characteristics of DOM in high arsenic groundwater of kuitun, Xinjiang[J]. China Environmental Science, 40(11): 4974-4981(in Chinese with English abstract).

    WANG Jing, LI Hai-rong, YANG Lin-sheng. 2020. Selenium levels in the environment, food, and human hair in Kashin-Beck Disease endemic areas of the Qinghai-Xizang Plateau[J]. Progress in Geography, 39(10): 1677-1686(in Chinese with English abstract).

    WU Feng-chang, WANG Li-ying, LI Wen, ZHANG Run-yu, FU Ping-qing, LIAO Hai-qing, BAI Ying-chen, GUO Jian-yang, WANG Jing. 2008. Natural organic matter and its significance in terrestrial surface environment[J]. Journal of Lake Sciences, 4(1): 1-12(in Chinese with English abstract).

    WÜNSCH U J, HAWKES J A. 2020. Mathematical chromatography deciphers the molecular fingerprints of dissolved organic matter[J]. Analyst, 145(5): 1789-1800.

    XIE Bing-xin, WANG Shu, SUN Hui, CHEN Yu-wen, FAN Shi-yu, LI Xin. 2020. Impacts of dissolved organic matter on the environmental behavior of persistent organic pollutants: a review[J]. Environmental Pollution & Control, 42(12):1563-1568(in Chinese with English abstract).

    YASSINE M M, HARIR M, DABEK-ZLOTORZYNSKA E, SCHMITT-KOPPLIN P. 2014. Structural characterization of organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: Aromaticity equivalent approach[J].Rapid Communications in Mass Spectrometry, 28(22):2445-2454.

    YUTHAWONG V, KASUGA I, KURISU F, FURUMAI H. 2020.Application of Orbitrap mass spectrometry to investigate seasonal variations of dissolved organic matter composition in a eutrophic lake in Japan[J]. Environmental Science: Water Research & Technology, 6(7): 1816-1827.

    ZHANG Bo, GAO Jian-wen, FAN Shao-jin, WANG Shu-hang, ZHENG Shuo-fang, JIANG Xia. 2020. Origin and spatial-temporal distribution characteristics of dissolved organic matter in Nanhu Lake water system[J]. Journal of Environmental Engineering Technology, 10(6): 912-919(in Chinese with English abstract).

    ZHANG L, LI A, LU Y F, YAN L, ZHONG S, DENG C L. 2009.Characterization and removal of dissolved organic matter(DOM) from landfill leachate rejected by nanofiltration[J].Waste Management, 29(3): 1035-1040.

    ZHANG X X, CHEN Z L, HUO X Y, KANG J, ZHAO S X, PENG Y T, DENG F X, SHEN J M, CHU W. 2021. Application of Fourier transform ion cyclotron resonance mass spectrometry in deciphering molecular composition of soil organic matter:A review[J]. Science of the Total Environment, 756: 144140.

    ZHUROV K O, KOZHINOV A N, TSYBIN Y O. 2013. Evaluation of high-field orbitrap fourier transform mass spectrometer for petroleomics[J]. Energy & Fuels, 27(6): 2974-2983.

    ZUBAREV R A, MAKAROV A. 2013. Orbitrap mass spectrometry[J]. Analytical Chemistry, 85(11): 5288-5296.

  • 加载中
计量
  • 文章访问数:  78
  • PDF下载数:  260
  • 施引文献:  0
出版历程
收稿日期:  2021-08-05
修回日期:  2021-12-09

目录