-
摘要: 随着中国锑矿产量下降以及全球新能源领域对锑需求量的增加, 全球锑原材料供需格局正在改变。对全球锑原材料贸易格局的现状及演化过程开展分析, 有助于世界各国构建弹性的锑原材料供应链。本文基于物质流与复杂网络分析方法, 定量刻画了四类锑原材料(锑矿石、锑金属、锑初级加工品、再生锑)的全球贸易格局(2002—2020 年), 分析了典型国家(地区)的锑原材料贸易结构及贸易地位变化特征, 总结了贸易格局的演化规律。研究发现: (1)锑初级加工品是全球最主要的贸易品种, 其贸易量占全球锑原材料总贸易量的一半以上; (2)中国和美国分别是贸易地位排名前两位的国家, 印度、欧盟、韩国是贸易地位上升最快三个国家(地区); (3)欧盟锑金属的进口来源呈现明显的多元化趋势, 显著降低了对中国的进口依赖, 表明欧盟近些年实施的关键原材料多元化进口战略取得了显著成效; (4)中国在全球锑原材料供应格局中的绝对优势地位在下降, 与此同时, 全球锑原材料贸易格局正朝着更加多元的方向发展。Abstract: The global supply-demand pattern for antimony-containing materials is changing as China’s mine production declines and global demand for antimony-containing materials increases in new energy sectors. An analysis of the global antimony raw materials trade pattern can help countries build their own resilient supply chains of antimony raw materials. Using material flow and complex network analysis methods, this study quantitatively depicts the global trade pattern of four types of antimony raw materials (antimony ore, antimony metal, primary processed materials of antimony, and secondary antimony) from 2002 to 2020. Additionally, the evolutionary characteristics of the global antimony raw materials trade pattern and national status are analyzed. Primary processed materials containing antimony were found to be the most important type of commodity, with trade volumes accounting for more than half of the global trade volumes of antimony raw materials. China and the United States were found to be the two countries with the most comprehensive trade status, while India, the EU, and South Korea were the countries (regions) with the fastest rise in comprehensive trade status. The EU’s import sources of antimony showed an obvious diversification trend, which significantly reduced its import dependence on China, indicating that the EU’s import strategy of critical raw materials has achieved remarkable results in recent years. China’s absolute dominance in the global supply of antimony raw materials is declining with the development of a more diversified pattern of global antimony raw materials trade.
-
Key words:
- antimony industry chain /
- raw materials /
- international trade /
- national status /
- complex network
-
-
计启迪, 刘卫东, 陈伟, 王涛. 2021. 基于产业链的全球铜贸易网络结构研究[J]. 地理科学, 41( 1): 44-54.
汪小帆, 李翔, 陈关荣.2012. 网络科学导论[M]. 北京: 高等教育出版社: 38-45.
吴宗柠, 樊瑛. 2018. 复杂网络视角下国际贸易研究综述[J]. 电子科技大学学报, 47(3): 469-480.
周艳晶, 李建武, 陈风河, 吕红娟, 王建, 孙启达. 2016. 美国再生锑发展之于我国启示[J]. 中国矿业, 25(2): 53-57.
CHEN Guang, KONG Rui, WANG Yi-xin. 2020. Research on the evolution of lithium trade communities based on the complex network[J]. Physica A: Statistical Mechanics and its Applications, 540: 123002.
CHU Jian-wen, MAO Jian-su, HE Meng-chang. 2019. Anthropogenic antimony flow analysis and evaluation in China[J]. Science of the Total Environment, 683: 659-667.
European Commission. 2019. COMMISSION REGULATION (EU) 2019/2021[EB/OL]. [2019-10-12]. https://eur-lex.europa.eu/legal-ontent/EN/TXT/?uri=CELEX%3A02019R2021-0210301& qid =1618224568532.
GE Jian-ping, WANG Xi-bo, GUAN Qing, LI Wei-heng, ZHU He, YAO Min. 2016. World rare earths trade network: Patterns, relations and role characteristics[J]. Resources Policy, 50: 119-130.
GRAEDEL T E. 2019. Material flow analysis from origin to evolution[J]. Environmental Science & Technology, 53: 12188-12196.
HOU Wen-yu, LIU Hui-fang, WANG Hui, WU Feng-yang. 2018. Structure and Patterns of the international rare earths trade: A complex network analysis[J]. Resources Policy, 55: 133-142.
HU Xiao-qian, WANG Chao, LIM M K, CHEN Wei-qiang. 2020. Characteristics of the global copper raw materials and scrap trade systems and the policy impacts of China's import ban[J]. Ecological Economics, 172: 106626.
IEA. 2022. Policies database[DB/OL]. [2022-02-23]. https://www.iea.org/policies?topic%5B0%5D=Critical%20Mi nerals& type%5B0%5D=Minerals%20list.
JI Qi-di, LIU Wei-dong, CHEN Wei, WANG Tao. 2021. Structure of global copper-containing products trade network based on industrial chain perspective[J]. Scientia Geographica Sinica, 41(1): 44-54(in Chinese with English abstract).
LI Bai-hua, LI Hua-jiao, DONG Zhi-liang, LU Yu, LIU Nai-rong, HAO Xiao-qing. 2021. The global copper material trade network and risk evaluation: A industry chain perspective[J]. Resources Policy, 74: 102275.
LIU Gang, MÜLLER D B. 2013. Mapping the global journey of anthropogenic aluminum: A trade-linked multilevel material flow analysis[J]. Environmental Science & Technology, 47(20): 11873-11881.
LIU Hai-ping, LI Hua-jiao, QI Ya-jie, AN Peng-li, SHI Jiang-lan, LIU Yan-xin. 2021. Identification of high-risk agents and relationships in nickel, cobalt, and lithium trade based on resource-dependent networks[J]. Resources Policy, 74: 102370.
MATHYS R, DITTMAR J, JOHNSON C A.2007. Antimony in Switzerland: A substance flow analysis[M]. Bern: Federal Office for the Environment (FOEN).
NASSAR N T, BRAINARD J, GULLEY A, MANLEY R, MATOS G, LEDERER G, BIRD L R, PINEAULT D, ALONSO E, GAMBOGI J, FORTIER S M. 2020. Evaluating the mineral commodity supply risk of the U.S. manufacturing sector[J]. Science Advances, 6(8): eaay8647.
SUN Xin, HAO Han, HARTMANN P, LIU Zong-wei, ZHAO Fu-quan. 2019. Supply risks of lithium-ion battery materials: An entire supply chain estimation[J]. Materialstoday Energy, 14: 100347.
SUN Xin, HAO Han, ZHAO Fu-quan, LIU Zong-wei. 2017. Tracing global lithium flow: A trade-linked material flow analysis[J]. Resources, Conservation and Recycling, 124: 50-61.
TONG Xin, LIFSET R. 2007. International copper flow network: A blockmodel analysis[J]. Ecological Economics, 61(2-3): 345-354.
Trade Statistics Branch, United Nations Statistics Division. 2022. UN Comtrade Database[EB/OL]. [2022-10-12]. https://comtrade.un.org/data/.
TSUNEMI K, WADA H. 2008. Substance flow analysis of antimony for risk assessment of antimony and antimony compounds in Japan[J]. Journal of the Japan Institute of Metals, 72(2): 91-98.
USGS. 2022. Mineral commodity summaries 2022[R]. Reston, VA: U.S. Geological Survey.
VAN DEN BRINK S, KLEIJN R, SPRECHER B, TUKKER A. 2020. Identifying supply risks by mapping the cobalt supply chain[J]. Resources, Conservation and Recycling, 156: 104743.
WANG Chun-hui, ZHONG Wei-qiong, WANG An-jian, SUN Xiao-qi, LI Tian-jiao, WANG Xing-xing. 2021. Mapping the evolution of international antimony ores trade pattern based on complex network[J]. Resources Policy, 74: 102421.
WANG Xiao-fan, LI Xiang, CHEN Guan-rong.2012. Network science: An introduction[M]. Beijing: Higher Education Press: 30-45(in Chinese).
WU Zong-ning, FAN Ying. 2018. Review of international trade: The complex network approach[J]. Journal of University of Electronic Science and Technology of China, 47(3): 469-480(in Chinese with English abstract).
ZHONG Wei-qiong, DAI Tao, WANG Gao-shang, LI Qiang-feng, LI Dan, LIANG Liang, SUN Xiao-qi, HAO Xiao-qing, JIANG Mei-hui. 2018. Structure of international iron flow: Based on substance flow analysis and complex network[J]. Resources, Conservation and Recycling, 136: 345-354.
ZHOU Yan-jing, LI Jian-wu, CHEN Feng-he, LÜ Hong-juan, WANG Jian, SUN Qi-da. 2016. Revelation of antimony recycling in the United States[J]. China Mining Magazine, 25(2): 53-57(in Chinese with English abstract).
-
计量
- 文章访问数: 61
- PDF下载数: 14
- 施引文献: 0