-
摘要: 在全球能源低碳转型的背景下, 白银不仅广泛应用于电子电气、钎焊合金等传统工业领域以及首饰银器和投资领域, 更是与光伏、电动汽车和5G 技术等绿色清洁能源领域密切相关。本研究采用部门分析法分别预测在既定政策情景(STEPS)、宣布承诺情景(APS)和2050 年净零排放情景(NZE)三种情景下光伏、电动汽车领域的白银需求, 并使用ARIMA 模型分析传统工业领域需求, 预测至2035 年全球白银需求。研究结果表明, 三种情景下, 2035 年工业领域对白银的需求量分别为19 360 t、21 621 t 和26 894 t。在中情景下(APS 情景)低碳领域白银需求量将在2031 年超过传统工业领域白银需求量; 在高情景下(NZE 情景)低碳领域需求量将在2024 年超过传统工业领域白银需求量。Abstract: In the context of global transition to low-carbon energy, silver is not only widely used in electrical and electronics, brazing alloys, and soldering and other traditional industrial, jewelry, and investment fields, but is also closely related to green and clean energy fields, such as photovoltaic solar energy, electric vehicles, and 5G technology. In this study, we used sector analysis to forecast silver demand in photovoltaic and electric vehicles under three scenarios: stated policies, announced pledges (APS), and net zero emissions by 2050 (NZE) scenarios. Additionally, we used the ARIMA model to analyze traditional industrial and forecast global industrial silver demands up to 2035. The results showed that under the three scenarios, the industrial silver demand in 2035 will be 19 360 t, 21 621 t, and 26 894 t. In the medium scenario (APS), the demand for silver in the low-carbon sector will exceed that in the traditional industrial sector in 2031. In the high scenario (NZE), the demand for silver in the low-carbon sector will exceed that in the traditional industrial sector by 2024.
-
Key words:
- silver /
- low-carbon technology /
- demand prediction /
- sector analysis method /
- ARIMA model
-
-
艾重阳, 赵茜茜, 吴宛芹, 刘冠闻, 师俊玲. 2020. 生物合成的银纳米粒子医学应用潜力[J]. 生命科学, 32(6): 630-640.
陈强, 谢贵生. 2020. 一种无银焊料与银焊料的焊接性能比对[J]. 铁道机车与动车, (4): 5-8.
陈星全, 屈金芝, 张艳松, 武丽丽, 王兰. 2021. 2021-2035 年世界锗矿产品供需形势分析[J]. 中国矿业, 30(3): 37-42.
陈兴荣. 2014. 全球与中国银矿资源现状及白银需求定量预测研究[D]. 北京: 中国地质大学.
代涛, 文博杰, 梁靓, 姜含璐. 2017. 铅消费规律探索及中国需求预测[J]. 地球学报, 38(1): 61-68.
工信部. 2022. 新能源汽车产业发展规划(2021-2035年)[EB/OL]. [2022-07-31]. https://wap.miit.gov.cn/cms_files/ filemanager/1226211233/attach/20224/73d4bf7a9abf4e1994b 0 fd211986641f.pdf.
胡世良. 2022. 实施5G“三化”策略加快5G 规模化发展[J]. 通信世界, (15): 23-25.
柳群义. 2019. 基于“S”形模型的全球铜需求分析[J]. 中国矿业, 28(10): 61-68.
孟月. 2022. 5G 创新助力绿色低碳发展[J]. 通信世界, (12): 14-15.
王安建, 王高尚, 陈其慎, 于汶加. 2010. 矿产资源需求理论与模型预测[J]. 地球学报, 31(2): 137-147.
王晨阳, 汪鹏, 汤林彬, 陈玮, 陈伟强. 2022. 碳中和背景下中国电动车产业稀土需求预测[J]. 科技导报, 40(8): 50-61.
王家鹏, 吴龙, 张洪川. 2021. 全球白银资源供需格局与价格影响因素分析[J]. 中国矿业, 30(S1): 1-4.
王修, 李天骄, 王安建, 刘冲昊, 范凤岩. 2022. 基于主要工业产品产量的我国钽资源需求预测[J]. 矿业研究与开发, 42(6): 191-196.
吴怀宇.2004. 时间序列分析与综合[M]. 武汉: 武汉大学出版社.
吴晴, 张照志, 潘昭帅, 张泽南, 徐恒逸. 2021. 2020-2035 年我国钒需求预测[J]. 中国矿业, 30(5): 48-56.
张亮, 杨卉芃, 冯安生, 赵军伟, 谭秀民. 2016. 全球银矿资源概况及供需分析[J]. 矿产保护与利用, (5): 44-48.
郑明贵, 袁雪梅. 2018. 基于灰色神经网络的中国2020-2030年铬矿需求预测[J]. 资源开发与市场, 34(6): 747-752.
中国光伏行业协会. 2021. 中国光伏产业发展路线图[EB/OL]. [2022-04-02]. http://www.chinapv.org.cn/road_map/1016.html.
AI Chong-yang, ZHAO Xi-xi, WU Wan-qin, LIU Guan-wen, SHI Jun-ling. 2020. Medical applications of biological silver nanoparticles[J]. Chinese Bulletin of Life Sciences, 32(6): 630-640(in Chinese with English abstract).
CHEN Qiang, XIE Gui-sheng. 2020. Comparison of welding properties between a silver-free solder and a silver solder[J]. Railway Locomotive and Motor Car, (4): 5-8(in Chinese with English abstract).
CHEN Xing-quan, QU Jin-zhi, ZHANG Yan-song, WU Li-li, WANG Lan. 2021. Analysis of the global germanium resource supply and demand situation from 2021 to 2035[J]. China Mining Magazine, 30(3): 37-42(in Chinese with English abstract).
CHEN Xing-rong. 2014. The status and quantitative prediction of silver resources in the world and China[D]. Beijing: China University of Geosciences(in Chinese with English abstract).
China Photovoltaic Industry Association. 2021. China PV industry development roadmap[EB/OL]. [2022-04-02]. http:// www.chinapv.org.cn/road_map/1016.html(in Chinese).
CRU. 2016. Prospects for silver demand in ethylene oxide and photovoltaics[R]. London: CRU Consulting.
DAI Tao, WEN Bo-jie, LIANG Liang, JIANG Han-lu. 2017. A Tentative Discussion on the Law of Lead Consumption and a Prediction of China’s Lead Demand[J]. Acta Geoscientica Sinica, 38(01):61-68(in Chinese with English abstract).
DOE. 2021. Solar futures study[R]. Washington D.C.: U.S. Department of Energy.
European Commission. 2020. Sustainable and smart mobility strategy–putting European transport on track for the future[EB/OL]. [2022-04-02]. https://eur-lex.europa.eu/ resource.html?uri=cellar:5e601657-3b06-11eb-b27b-01aa75ed7 1a1.0001.02/DOC_1& format=PDF.
GRANDELL L, THORENZ A. 2014. Silver supply risk analysis for the solar sector[J]. Renewable Energy, 69: 157-165.
HU Shi-liang. 2022. Implement the "three industrialization" strategy to accelerate the large-scale development of 5G[J]. Communications World, (15): 23-25(in Chinese).
IEA. 2021. World energy outlook 2021[EB/OL]. [2022-06-01]. https://www.iea.org/reports/world-energy-outlook-2021.
IEA. 2022. Global electric vehicle outlook 2022[EB/OL]. [2022-06-15]. https://www.iea.org/reports/global-ev-outlook -2022.
IRENA. 2022. Renewable capacity statistics 2022[EB/OL]. [2022-06-01]. https://www.irena.org/publications/2022/Apr/ Renewable-Capacity-Statistics-2022.
LI Wen-hua, ADACHI T. 2018. Evaluation of long-term silver supply shortage for c-Si PV under different technological scenarios[J]. Natural Resource Modeling, 32(1): e12176.
LIU Qun-yi. 2019. Global copper demand analysis based on the S-shape model[J]. China Mining Magazine, 28(10): 61-68(in Chinese with English abstract).
MENG Yue. 2022. 5G innovation boosts green and low-carbon development[J]. Communications World, (12): 14-15(In Chinese).
METI. 2020. 2050 年カーボンニュートラルに伴うグリーン成長戦略 [EB/OL]. [2022-08-01]. https://www.meti. go.jp/ press/2020/12/20201225012/20201225012-2.pdf(in Japanese).
METI. 2021. Outline of strategic energy plan[EB/OL]. [2022-06-10]. https://www.enecho.meti.go.jp/en/category/ others/basic_plan/pdf/6th_outline.pdf.
Ministry of Industry and Information Technology of the People’s Republic of China. 2022. New energy vehicle industry development plan (2021-2035)[EB/OL]. [2022-07-31]. https://wap.miit.gov.cn/cms_files/filemanager/1226211233/attac h/20224/73d4bf7a9abf4e1994b0fd211986641f.pdf(in Chinese).
OICA. 2021. Sales statistics[DB]. French: The International Organization of Motor Vehicle Manufacturers.
SI. 2020a. Silver's important role in solar power[EB/OL]. [2022-4-13]. https://www.silverinstitute.org/wpcontent/ uploads/2020/06/SilverSolarPower_CRU2020.pdf.
SI. 2020b. Silver's role in a future 5G connected world[EB/OL]. [2022-03-03]. https://www.silverinstitute.org/wp-content/ uploads/2017/05/5GSilver.pdf.
SI. 2021a. Silver in printed & flexible electronics[EB/OL]. [2022-03-03]. https://www.silverinstitute.org/wp-content/ uploads/ 2021/05/content/uploads/2021/05/SilverElectronics_ MmktTR2021v.pdf.
SI. 2021b. Silver's growing role in the automotive industry[EB/OL]. [2022-04-12]. https://www.silverinstitute.org/wpcontent/ uploads/2021/01/SilverAutomotive_MmktTR2021. pdf.
SI. 2022a. World Silver Surveys[EB/OL]. [2022-04-01]. https://www.silverinstitute.org/all-world -silver -surveys/.
SI. 2022b. Silver in brazing and solder alloy materials[EB/OL]. [2022-08-10]. https://www.silverinstitute.org/wp-content/uploads/ 2022/06/SilverInBrazingAndAlloyMaterials_Mmkt TR2022. pdf.
SMIRNOVA M. 2021. Silver's clean energy future[EB/OL]. [2022-04-02]. https://www.sprott.com/insights/silvers-clean -energy-future/.
SOLARPOWER EUROPE. 2022. Global market outlook for solar power[EB/OL]. [2022-06-11]. https://api.solarpowereurope. org/uploads/Solar_Power_Europe_Global_Market_Outlook_r eport_2022_2022_V2_07aa98200a.pdf.
THE WHITE HOUSE. 2021. President biden announces steps to drive American leadership forward on clean cars and trucks[EB/OL]. [2022-08-10]. https://www.whitehouse.gov/briefing-room/ statements-releases/2021/08/05/fact-sheet-president-biden-announces-st eps-to-drive-american-leadership-forward-on-clean-cars- and -trucks/.
WANG An-jian, WANG Gao-shang, CHEN Qi-shen, YU Wen-jia. 2010. The mineral resources demand theory and the prediction model[J]. Acta Geoscientica Sinica, 31(2): 137-147(in Chinese with English abstract).
WANG Chen-yang, WANG Peng, TANG Lin-bin, CHEN Wei, CHEN Wei-qiang. 2022. Forecast of rare earth demand driven by electric vehicle industry in China: 2010-2060[J]. Science & Technology Review, 40(8): 50-61(in Chinese with English abstract).
WANG Jia-peng, WU Long, ZHANG Hong-chuan. 2021. Analysis on the supply and demand pattern of global silver resources and the influencing factors of price[J]. China Mining Magazine, 30(S1): 1-4(in Chinese with English abstract).
WANG Xiu, LI Tian-jiao, WANG An-jian, LIU Chong-hao, FAN Feng-yan. 2022. The forecast of tantalum resource demand based on the output of major industrial products in China[J]. Mining Research and Development, 42(6): 191-196(in Chinese with English abstract).
WU Huai-yu.2004. Time series analysis and synthesis[M]. WuHan: Wuhan University Press(in Chinese).
WU Qing, ZHANG Zhao-zhi, PAN Zhao-shuai, ZHANG Ze-nan, XU Heng-yi. 2021. Forecast of China’s vanadium resource demand from 2020 to 2035[J]. China Mining Magazine, 30(5): 48-56(in Chinese with English abstract).
ZHANG Liang, YANG Hui-peng, FENG An-sheng, ZHAO Jun-wei, TAN Xiu-min. 2016. Study on general situation and analysis of supply and demand of global sliver resource[J]. Conservation and Utilization of Mineral Resources, (5): 44-48(In Chinese with English abstract).
ZHENG Ming-gui, YUAN Xue-mei. 2018. Demand forecasting of China’s chrome ore from 2020 to 2030 based on grey neural network[J]. Resource Development & Market, 34(6): 747-752(in Chinese with English abstract).
-
计量
- 文章访问数: 46
- PDF下载数: 14
- 施引文献: 0