Study on the Recycling Potential of Iron Secondary Resources in China Based on Dynamic Material Flow Analysis
-
摘要: 新时代背景下, 增强铁资源二次循环利用率, 是中国钢铁工业摆脱国外铁矿石依赖, 同时实现绿色低碳高质量发展的重要途经。为揭示铁资源二次回收规模, 本文利用动态物质流分析(Material Flow Analysis, MFA), 对中国铁循环规律、社会存量和二次资源潜力进行了分析。结果显示: ①国内铁矿石供应不足, 国外铁矿石进口为中国铁循环的重要来源。建国以来, 中国累计净进口铁矿石中的铁物质达90.7 亿t, 实际铁资源消费量累计为120.2 亿t。②2021 年中国铁社会存量达97.9 亿t, 人均铁社会存量也达到了 6.9 t/人, 但人均存量尚未达到发达国家平均水平, 未来, 铁社会存量会进一步增加, 同时也将继续刺激铁矿石资源的大量消耗。③建国以来, 中国铁资源理论报废量持续上升, 累计达22.2 亿t。到2050 年, 中国铁二次资源报废量达4.4 亿~5.6 亿t, 铁社会存量规模也将达141.0 亿~199.9 亿t, 充足的铁二次资源规模是缓解初级供应短缺的重要基础条件。基于研究结果, 中国应该加快构建旧废钢回收体系, 引导新型全废钢电弧炉冶炼工艺的开发设计, 全面提高铁二次资源循环利用效率。同时, 以“双碳”目标为契机, 倒逼落后产能退出市场, 化解产能过剩矛盾。Abstract: Due to the high dependence on foreign iron ore, enhancing the recycling utilization rate of secondary iron resources is critical in China. At the same time, improving low-carbon transformation and high-quality development is also an effective strategy. In this study, dynamic material flow analysis (MFA) was applied to characterize the available scale of secondary iron resources and the iron stock and flow in China from 1949 to 2021 were analyzed. The results show that: ① Domestic iron ore and imported resources are the main source of the Chinese iron cycle. The cumulative net import of iron material and iron ore amounted to 9.07 billion tons and the actual consumption of iron resources in China from 1949 to 2021 was 12.02 billion tons. ② In 2021, China’s iron stock had reached 9.79 billion tons, and the per capita stock of iron reached 6.9 tons/person. However, the per capita stock has not reached the average level of developed countries. Therefore, the iron stock will increase further, and will continue to stimulate the massive consumption of iron ore resources. ③ In recent years, the theoretical volume of iron scrap resources has continued to increase, reaching a total of 2.22 billion tons. By 2050, it is predicted that the scrap capacity of secondary iron resources will reach 440–560 million tons, and the scale of iron stock will reach 14.10–19.99 billion tons in China. Sufficient secondary iron resources are essential to alleviating the primary supply gap. The research results indicate that strategies are required to accelerate the construction of secondary iron resource recycling systems, guide the development and design of new all-scrap electric arc furnace smelting processes, and comprehensively improve the recycling efficiency of secondary iron resources. At the same time, the “double carbon” target is also an opportunity to force backward production capacity out of the market to resolve the problem of overcapacity.
-
Key words:
- iron /
- material flow analysis /
- China /
- social stock /
- secondary resources
-
-
王安建, 王高尚, 周凤英. 2017. 能源和矿产资源消费增长的极限与周期[J]. 地球学报, 38(1): 3-10. 王俊博, 范蕾, 李新, 柳群义, 邢万里, 赵琪. 2016. 基于物质流方法的中国铜资源社会存量研究[J]. 资源科学, 38(5): 939-947.
王琳, 齐中英, 潘峰. 2014. 基于动态物质流的钢沉淀运动规律分析[J]. 中国人口·资源与环境, 24(12): 164-170. 王宪恩, 栾天阳, 陈英姿, 段海燕. 2016. 基于LCA 的废旧资源循环利用节能减排效果评估模式与方法研究--以吉林省某钢铁企业为例[J]. 中国人口·资源与环境, 26(10): 69-77.
文博杰, 韩中奎. 2018. 2015 年中国钴物质流研究[J]. 中国矿业, 27(1): 73-77. 邢凯, 朱清, 邹谢华. 2022. 我国铁素资源供给态势分析[J]. 中国国土资源经济, 35(8): 27-37.
张超, 王韬, 陈伟强, 刘刚, 杜欢政. 2018. 中国钢铁长期需求模拟及产能过剩态势评估[J]. 中国人口·资源与环境, 28(10): 169-176. BIR. 2022. The bureau of international recycling[EB/OL]. 2022. [2022-09-15]. https://www.bir.org/the-industry/ferrous-metals.
CIACCI L, RECK B K, NASSAR N T, GRAEDEL T E. 2015. Lost by design[J]. Environmental Science & Technology, 16: 9443-9451.
DONG Di, TUKKER A, VAN DER VOET E. 2019. Modeling copper demand in China up to 2050: A business-as-usual scenario based on dynamic stock and flow analysis[J]. Journal of Industrial Ecology, 23(6): 1363-1380.
LI Qiang-feng, GAO Tian-ming, WANG Gao-shang, CHENG Jin-hua, DAI Tao, WANG Huan. 2019. Dynamic analysis of iron flows and in-use stocks in China: 1949-2015[J]. Resources Policy, 62: 625-634.
LIU Gang, BANGS C E, MÜLLER D B. 2012. Stock dynamics and emission pathways of the global aluminium cycle[J]. Nature Climate Change, 3: 338-342.
LIU Gang, MÜLLER D B. 2013. Centennial evolution of aluminum in-use stocks on our aluminized planet[J]. Environmental Science & Technology, 47(9): 4882-4888.
MAUNG K N, HASHIMOTO S, MIZUKAMI M, MOROZUMI M, LWIN C M. 2017a. Assessment of the secondary copper reserves of nations[J]. Environmental Science & Technology, 51(7): 3824-3832.
MAUNG K N, YOSHIDA T, LIU Gang, LWIN C M, MULLER D B, HASHIMOTO S. 2017b. Assessment of secondary aluminum reserves of nations[J]. Resources, Conservation & Recycling, 126: 34-41.
MÜLLER D B, WANG Tao, DUVAL B. 2011. Patterns of iron use in societal evolution[J]. Environmental Science & Technology, 45(1): 182-188.
PAULIUK S, WANG Tao, MÜLLER D B. 2012. Moving toward the circular economy: The role of stocks in the Chinese steel cycle[J]. Environmental Science & Technology, 46(1): 148-154.
PAULIUK S, WANG Tao, MÜLLER D B. 2013. Steel all over the world: Estimating in-use stocks of iron for 200 countries[J]. Resources, Conservation & Recycling, 71: 22-30.
REN Ming, LU Pan-tao, LIU Xiao-rui, HOSSAIN M S, FANG Yan-ru, HANAOKA T, O'GALLACHOIR B, GLYNN J, DAI Han-cheng. 2021. Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality[J]. Applied Energy, 298: 117209.
SONG Xiao-xu, HU Shan-ying, CHEN Ding-jiang, ZHU Bing. 2017. Estimation of waste battery generation and analysis of the waste battery recycling system in China[J]. Journal of Industrial Ecology, 21(1): 57-69.
SOULIER M, GLÖSER-CHAHOUD S, GOLDMANN D, ESPINOZA L A T. 2018. Dynamic analysis of European copper flows[J]. Resources, Conservation & Recycling, 129: 143-152.
SUN Xin, HAO Han, ZHAO Fu-quan, LIU Zong-wei. 2018. Global lithium flow 1994-2015: Implications for improving resource efficiency and security[J]. Environmental Science & Technology, 52(5): 2827-2834.
UN Comtrade Database. 2022. [2022-09-15]. https://comtrade.un.org/db/syslogin.aspx?ReturnUrl=%2fdb%2fdqQuickQuery.aspx.
WANG An-jian, WANG Gao-shang, ZHOU Feng-ying. 2017. The limits and cycles of the growth of energy and mineral resources consumption[J]. Acta Geoscientica Sinica, 38(1): 3-10(in Chinese with English abstract).
WANG Jun-bo, FAN Lei, LI Xin, LIU Qun-yi, XING Wan-li, ZHAO Qi. 2016. Research on the social stock of copper resources in China based on the material flow analysis[J]. Resources Science, 38(5): 939-947(in Chinese with English abstract).
WANG Lin, QI Zhong-ying, PAN Feng. 2014. Pattern analysis of steel anthropogenic precipitation movement based on dynamics material flow analysis[J]. China Population, Resources and Environment, 24(12): 164-170(in Chinese with English abstract).
WANG Peng, JIANG Ze-yi, GENG Xin-yi, HAO Shi-yu, ZHANG Xin-xin. 2014. Quantification of Chinese steel cycle flow: Historical status and future options[J]. Resources, Conservation & Recycling, 87: 191-199.
WANG Qiao-chu, WANG Peng, QIU Yang, DAI Tao, CHEN Wei-qiang. 2020. Byproduct surplus: Lighting the depreciative europium in China’s rare earth boom[J]. Environmental Science & Technology, 54(22): 14686-14693.
WANG Tao, MÜLLER D B, GRAEDEL T E. 2007. Forging the anthropogenic iron cycle[J]. Environmental Science & Technology, 41(14): 5120-5129.
WANG Tao, MÜLLER D B, HASHIMOTO S. 2015. The ferrous find: Counting iron and steel stocks in China’s economy[J]. Journal of Industrial Ecology, 19(5): 877-889.
WANG Xian-en, LUAN Tian-yang, CHEN Ying-zi, DUAN Hai-yan. 2016. Research on the evaluation pattern and method of the energy conservation and emission reduction effects of waste resources recycling based on life cycle assessment: a case study of an iron and steel industry enterprise in Jilin Province[J]. China Population, Resources and Environment, 26(10): 69-77(in Chinese with English abstract).
WEN Bo-jie, HAN Zhong-kui. 2018. Substance flow analysis of cobalt in China in 2015[J]. China Mining Magazine, 27(1): 73-77(in Chinese with English abstract).
XING Kai, ZHU Qing, ZOU Xie-hua. 2022. Analysis of supply situation of iron resources in China[J]. Natural Resource Ecomomics of China, 35(8): 27-37(in Chinese with English abstract).
XUAN Yan-ni, YUE Qiang. 2016. Forecast of steel demand and the availability of depreciated steel scrap in China[J]. Resources, Conservation & Recycling, 109: 1-12.
ZENG An-qi, CHEN Wu, RASMUSSEN K D, ZHU Xue-hong, LUNDHAUG M, MÜLLER D B, TAN Juan, KEIDING J K, LIU Li-tao, DAI Tao, WANG An-jian, LIU Gang. 2022. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages[J]. Nature Communications, 13: 1341.
ZHANG Chao, WANG Tao, CHEN Wei-qiang, LIU Gang, DU Huan-zheng. 2018. Simulation of China’s long-term steel demand and evaluation of the trend of overcapacity of steel industry[J]. China Population, Resources and Environment, 28(10): 169-176(in Chinese with English abstract).
ZHONG Wei-qiong, DAI Tao, WANG Gao-shang, LI Qiang-feng, LI Dan, LIANG Liang, SUN Xiao-qi, HAO Xiao-qing, JIANG Mei-hui. 2018. Structure of international iron flow: Based on substance flow analysis and complex network[J]. Resources, Conservation & Recycling, 136: 345-354.
-
计量
- 文章访问数: 48
- PDF下载数: 2
- 施引文献: 0