Geochemistry and Its Geothermal Reservoir Implications of Geothermal Water in the Guangdong-Hong Kong-Macao Greater Bay Area, South China
-
摘要: 粤港澳大湾区地热资源丰富, 但人们对区内地下热水地球化学特征的认识还存在一定争议。本文对27组地下热样品的水化学分析表明, 研究区内陆地热水的水化学相主要为重碳酸盐型, 沿海地热水则主要呈氯离子型。地热水的δ2H和δ18O值分别为-30‰ ~ -48‰和-5.2‰ ~ -7.5‰。内陆地热水的δ2H和δ18O值沿当地大气降水线(LMWL)分布, 表明内陆地热水来源于当地大气降水补给。沿海地热水的 δ18O值偏离当地大气降水线并向海水数据点靠拢, 沿海地热水的 δ18O值与 Cl-含量呈强正相关, 表明沿海地热流体源于当地大气降水和海水混合补给。经典地球化学温标、多矿物平衡状态模拟、硬石膏-玉髓矿物对饱和指数模拟以及硅-焓混合模型揭示的粤港澳大湾区地热系统热储温度为 104~156 ℃。内陆地热水中的地下冷水的混入比例为52%~84%, 沿海地热水中海水的混入比例高达37%。内陆和沿海地热水的最大循环深度分别为3300~4800 m和3200~4200 m, 没有显著差别。水化学组成与氢氧同位素研究均表明, 水岩反应和混合作用共同控制着研究区地下热水的地球化学特征。Abstract: The Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in South China has abundant geothermal resources. However, the geochemistry of geothermal water in the area remains unclear. Hydrochemical analysis of 27 samples shows that the inland and coastal geothermal waters are mainly of bicarbonate and chloride types, respectively. The GBA geothermal water δ2H and δ18O ratios are in the range of -30‰ to -48‰ and-5.2‰ to -7.5‰, respectively. The δ18O and δ2H compositions of inland water samples fall along the Local Meteoric Water Line (LMWL), indicating its local precipitation origin. In contrast, coastal geothermal water is enriched in heavy isotopes, with δ18O values deviating from the LMWL towards those of seawater, with a strong positive correlation between δ18O values and chloride concentrations, suggesting that coastal geothermal water is recharged by a mixture of seawater and local precipitation. The combination of empirical chemical geothermometers, modeling of multi-mineral saturation states, anhydrite/chalcedony saturation indices, and silica-enthalpy mixing models suggests a reservoir temperature range of 104-156 °C for the GBA geothermal systems. The contribution of cold groundwater to the sampled inland geothermal water ranges from 52%-84% and the proportion of seawater mixing with coastal thermal water can reach up to 37%. The circulation depths of inland and coastal geothermal water are found to vary from 3300-4800 m and 3200-4200 m, respectively. Hydrochemical and isotopic compositions indicate that mixing with cold groundwater/seawater and water-rock interactions are the predominant factors regulating the geochemistry of geothermal water in the GBA, South China.
-
-
曹新文, 马秀敏, 龚淑云, 纪友亮, 方春波, 李振, 杜威. 2018.深圳北西向断裂分布特征及其活动性研究[J]. 地质力学学报, 24(6): 759-767.
甘浩男, 蔺文静, 闫晓雪, 岳高凡, 张薇, 王贵玲. 2020. 粤中隐伏岩体区地热赋存特征及热异常成因分析[J]. 地质学报, 94(7): 2096-2106.
广州海洋地质调查局. 2018. 粤港澳大湾区地质图[DB/OL]. 广州: 广州海洋地质调查局. [2022-10-18].https://geocloud.cgs.gov.cn/.
林韵, 高磊, 李绍恒, 王卓微, 叶志平, 陈建耀, 杨志刚. 2020.广东江门地热水水文地球化学特征及来源分析[J]. 环境化学, 39(2): 512-523.
孙文娟, 张胜军, 孙海萍. 2021. 粤港澳大湾区能源发展现状及转型趋势分析[J]. 国际石油经济, 29(12): 10-15, 33.
徐彦泽. 2009. 沧州市地下水的水文地球化学与稳定同位素[D].北京: 中国地质大学(北京).
闫晓雪, 甘浩男, 岳高凡. 2019. 广东惠州-从化典型地热田水文地球化学特征及成因分析[J]. 地质论评, 65(3):743-754.
叶青. 2012. 广东从化新温泉地热地质特征及地热资源评价[D].北京: 中国地质大学(北京).
袁建飞. 2013. 广东沿海地热系统水文地球化学研究[D]. 武汉:中国地质大学(武汉).
袁玉松, 马永生, 胡圣标, 郭彤楼, 付孝悦. 2006. 中国南方现今地热特征[J]. 地球物理学报, 49(4): 1118-1126.
张珂, 马浩明, 蔡剑波. 2002. 华南沿海温泉成因探讨[J]. 中山大学学报(自然科学版), 41(1): 82-86.
张奇莺. 2010. 珠三角地区山地住区设计研究[D]. 广州: 华南理工大学.
周海燕, 周训, 柳春晖, 虞岚, 李娟, 梁永国. 2008. 广东省从化温泉热矿水水化学与同位素特征[J]. 自然资源学报, 23(4):705-712.
周海燕, 周训, 姚锦梅. 2007. 广东从化温泉的水文地球化学模拟[J]. 现代地质, 21(4): 619-623.
AFŞIN M, KUŞCU İ, ELHATIP H, DIRIK K. 2006. Hydrogeochemical properties of CO2-rich thermal-mineral waters in Kayseri (Central Anatolia), Turkey[J]. Environmental Geology, 50(1): 24-36.
ALÇIÇEK H, BÜLBÜL A, ALÇIÇEK M C. 2016. Hydrogeochemistry of the thermal waters from the Yenice Geothermal Field (Denizli Basin, Southwestern Anatolia, Turkey)[J].Journal of Volcanology and Geothermal Research, 309:118-138.
ALÇIÇEK H, BÜLBÜL A, YAVUZER İ, ALÇIÇEK M. C. 2019.Hydrogeochemical and isotopic assessment and geothermometry applications in relation to the Karahayıt Geothermal Field(Denizli Basin, SW Anatolia, Turkey)[J]. Hydrogeology Journal, 27(5): 1791-1816.
ARNÓRSSON S. 1983. Chemical equilibria in icelandic geothermal systems-Implications for chemical geothermometry investgations[J]. Geothermics, 12(2-3): 119-128.
AVŞAR Ö, KURTULUŞ B, GÜRSU S, KUŞCU G G, KAÇAROĞLU F. 2016. Geochemical and isotopic characteristics of structurally controlled geothermal and mineral waters of Muğla (SW Turkey)[J]. Geothermics, 64: 466-481.
BOUCHAOU L, MICHELOT J L, QURTOBI M, ZINE N, GAYE C B, AGGARWAL P K, MARAH H, ZEROUALI A, TALEB H, VENGOSH A. 2009. Origin and residence time of groundwater in the Tadla basin (Morocco) using multiple isotopic and geochemical tools[J]. Journal of Hydrology, 379(3-4): 323-338.
CHEN Liu-zhu, MA Teng, DU Yao, XIAO Cong, CHEN Xin-ming, LIU Cun-fu, WANG Yan-xin. 2016. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China[J]. Journal of Volcanology and Geothermal Research, 318: 45-54.
CAO Xin-wen, MA Xiu-min, GONG Shu-yun, JI You-liang, FANG Chun-bo, LI Zhen, DU Wei. 2018. A study on distribution characteristics and activity of north-west faults in Shenzhen[J]. Journal of Geomechanics, 24(6): 759-767(in Chinese with English abstract).
DARBYSHIRE D. P F, SEWELL R J. 1997. Nd and Sr isotope geochemistry of plutonic rocks from Hong Kong: implications for granite petrogenesis, regional structure and crustal evolution[J]. Chemical Geology, 143(1-2): 81-93.
FOURNIER R O. 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1-4):41-50.
GAN Hao-nan, LIN Wen-jing, YAN Xiao-xue, YUE Gao-fan, ZHANG Wei, WANG Gui-ling. 2020. Analysis of geothermal occurrence characteristics and origin of the thermal anomalies in the hidden igneous rock area in the central Guangdong[J].Acta Geologica Sinica, 94(7): 2096-2106(in Chinese with English abstract).
GIGGENBACH W F. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12): 2749-2765.
GUO Qi, PANG Zhong-he, WANG Ying-chun, TIAN Jiao. 2017.Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas[J]. Applied Geochemistry, 81: 63-75.
HU Sheng-biao, HE Li-juan, WANG Ji-yang. 2001. Compiltion of heat flow data in the China continental area (3rd edition)[J].Chinese Journal of Geophysics, 44(5): 604-618.
IAH. 1979. Map of mineral and thermal water of Europe (Scale 1:500, 000)[R]. New York: International Association of Hydrogeologists.
JIANG Guang-zheng, HU Sheng-biao, SHI Yi-zuo, ZHANG Chao, WANG Zhu-ting, HU Di. 2019. Terrestrial heat flow of continental China: Updated dataset and tectonic implications[J].Tectonophysics, 753: 36-48.
LIN Ben-hai, YANG Shu-zhuang, ZHU Bo-shan, WU Hou-xin.2006. Geological structure and basic geotechnical characteristics in Guangdong province[J]. Chinese Journal of Rock Mechanics and Engineering, 25(2): 3337-3346.
LIN Yun, GAO Lei, LI Shao-heng, WANG Zhuo-wei, YE Zhi-ping, CHEN Jian-yao, YANG Zhi-gang. 2020. Hydrogeochemical characteristics and source identification of geothermal waters in Jiangmen, Guangdong Province[J]. Environmental Chemistry, 39(2): 512-523(in Chinese with English abstract).
MICHARD G. 1990. Behaviour of major elements and some trace elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in deep hot waters from granitis areas[J]. Chemical Geology, 89(2): 117-134.
NICHOLSON K.1993. Geothermal fluids: Chemistry and exploration techniques[M]. Berlin: Springer-Verlag.
PANNO S V, HACKLEY K C, HWANG H H, GREENBERG S E, KRAPAC I G, LANDSBERGER S, O'KELLY D J. 2006.Characterization and identification of Na-Cl sources in ground water[J]. Ground Water, 44(2): 176-187.
PARKHURST D L, APPELO C A J. 1999. User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[R]. Reston VA: U.S. Geological Survey.
PASTORELLI S, MARINI L, HUNZIKER J C. 1999. Water chemistry and isotope composition of the Acquarossa thermal system, Ticino, Switzerland[J]. Geothermics, 28(1): 75-93.
PEI Jie, NIU Zheng, WANG Li, SONG Xiao-peng, HUANG Ni, GENG Jing, WU Yan-bin, JIANG Hong-hui. 2018. Spatial-temporal dynamics of carbon emissions and carbon sinks in economically developed areas of China: a case study of Guangdong Province[J]. Scientific Reports, 8(1): 13383.
QIU Xiao-lin, WANG Ya, WANG Zhong-zheng, REGENAUER-LIEB K, ZHANG Ke, LIU Jie. 2018. Determining the origin, circulation path and residence time of geothermal groundwater using multiple isotopic techniques in the Heyuan Fault Zone of Southern China[J]. Journal of Hydrology, 567: 339-350.
SUN Wen-juan, ZHANG Sheng-jun, SUN Hai-ping. 2021. Energy development status and transformation trend in Guangdong-Hong Kong-Macao Greater Bay Area[J]. International Petroleum Economics, 29(12): 10-15, 33(in Chinese with English abstract).
TANNOCK L, WANG Ya, LI Jing-fu, LIU Jie, ZHANG Ke, XU Li-feng, REGENAUER-LIEB K. 2019. A preliminary study on the mechanics and tectonic relationship to the geothermal field of the Heyuan Fault Zone in Guangdong Province[J].Journal of Geomechanics, 25(3): 400-411.
TARCAN G, GEMICI Ü. 2003. Water geochemistry of the Seferihisar geothermal area, İzmir, Turkey[J]. Journal of Volcanology and Geothermal Research, 126(3-4): 225-242.
TRUESDELL A H, HULSTON J R. 1980. Isotopic evidence on environments of geothermal systems[C]//FRITZ P, FONTES J C. Handbook of Environmental Isotope Geochemistry:179-226.
WANG Xiao, LU Guo-ping, HU B-X. 2018a. Hydrogeochemical characteristics and geothermometry applications of thermal waters in coastal Xinzhou and Shenzao geothermal fields, Guangdong, China[J]. Geofluids, 2018: 8715080.
WANG Xiao, WANG Gui-ling, LU Chuan, GAN Hao-nan, LIU Zhao. 2018b. Evolution of deep parent fluids of geothermal fields in the Nimu-Nagchu geothermal belt, Tibet, China[J].Geothermics, 71: 118-131.
WANG Ya, JIAO J J. 2012. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China[J]. Journal of Hydrology, 438-439: 112-124.
WEI Zheng-an, SHAO Hai-bing, TANG Ling, DENG Bin, LI Hai-long, WANG Cheng-shan. 2021. Hydrogeochemistry and geothermometry of geothermal waters from the Pearl River Delta region, South China[J]. Geothermics, 96: 102164.
XI Yu-fei, WANG Gui-ling, LIU Shuang, ZHAO Ya-bo, HU Xiang-yun. 2018. The formation of a geothermal anomaly and extensional structures in Guangdong, China: Evidence from gravity analyses[J]. Geothermics, 72: 225-231.
XU Yan-ze. 2009. Geochemistry and 2H and 18O stable isotopes of Cangzhou aquifer systems[D]. Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).
YAN Xiao-xue, GAN Hao-nan, YUE Gao-fan. 2019. Hydrogeochemical characteristics and genesis of typical geothermal fileds from Huangshadong to Conghua in Guangdong[J].Geological Review, 65(3): 743-754(in Chinese with English abstract).
YE Qing. 2012. Geologic features of the geothermal fields and assessment of geothermal resources in the New Conghua Hot Spring area in Guangdong[D]. Beijing: China University of Geosciences (Beijing) (in Chinese with English abstract).
YUAN Jian-fei. 2013. Hydrogeochemistry of the geothermal systems in coastal areas of Guangdong Province, South China[D].Wuhan: China University of Geosciences (Wuhan) (in Chinese with English abstract).
YURTERI C, SIMSEK S. 2017. Hydrogeological and hydrochemical studies of the Kaman-Savcili-Büyükoba (Kirsehir)geothermal area, Turkey[J]. Geothermics, 65: 99-112.
YUAN Yu-song, MA Yong-sheng, HU Sheng-biao, GUO Tong-lou, FU Xiao-yue. 2006. Present-day geothermal characteristics in South China[J]. Chinese Journal of Geophysics, 49(4):1118-1126(in Chinese with English abstract).
ZHANG Ke, MA Hao-ming, CAI Jian-bo. 2002. Discussion on the origins of hot spring along the coast of South China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 41(1):82-86(in Chinese with English abstract).
ZHANG Qi-ying. 2010. Study on mountain residential district design in Pearl River Delta region[D]. Guangzhou: South China University of Technology(in Chinese with English abstract).
ZHOU Hai-yan, ZHOU Xun, LIU Chun-hui, YU Lan, LI Juan, LIANG Yong-guo. 2008. Hydro-chemical and isotopic characteristics of Conghua hot mineral springs in Guangdong[J].Journal of Natural Resources, 23(4): 705-712(in Chinese with English abstract).
ZHOU Hai-yan, ZHOU Xun, YAO Jin-mei. 2007. Hydrogeochemical modeling of the Conghua hot spring in Guangdong[J]. Geoscience, 21(4): 619-623(in Chinese with English abstract).
-
计量
- 文章访问数: 22
- PDF下载数: 5
- 施引文献: 0