Geochronological and Geochemical Constraints of Leucogranites in Jianning Area, Central Wuyishan, and Their Geological Implications
-
摘要: 淡色花岗岩是了解造山过程中地壳物质部分熔融行为的重要岩石探针, 对于揭示造山演化过程中变质和岩浆作用之间的联系具有十分重要的意义。本文对武夷山中段建宁地区淡色花岗岩开展了系统的岩石学、锆石 U-Pb 年代学及地球化学研究。结果表明, 建宁淡色花岗岩形成于~440 Ma, 并记录了晚期410~405 Ma 深熔事件。淡色花岗岩属强过铝质岩石, 且富含800~700 Ma 年龄继承锆石, 表明其源岩为新元古代麻源群变质沉积岩。建宁淡色花岗岩具高SiO2、K2O, 贫MgO、FeOt、CaO、Na2O, 富集LREE 和LILEs, 亏损HREE 和HFSEs, 高Rb/Sr 比值等特征, 暗示其源岩可能发生了黑云母参与的含水或脱水熔融反应。综合本文结果和华南早古生代沉积、变质、岩浆等多方面地质记录可知, 建宁地区淡色花岗岩形成于同造山地壳加厚背景下, 而晚期410~405 Ma 的深熔事件可能与后造山伸展减薄有关。Abstract: Our study shows the combined petrological, geochemical, and geochronological analysis of the Jianning leucogranites in Central Wuyishan. MC-LA-ICPMS zircon U-Pb dating data show the formation of Jianning leucogranites at ~440 Ma with a late-stage anatectic event occurring at 410–405 Ma. These leucogranites are strongly peraluminous and contain inherited zircons with ages clustering at 800–700 Ma, suggesting that the Neoproterozoic meta-sedimentary rocks of the Mayuan Group are their source rocks. They exhibit high SiO2 and K2O, low MgO, FeOt, CaO, and Na2O, enrichment in LREE and LILEs, depletion in HREE and HFSEs, and high Rb/Sr ratios, suggesting their generation by biotite fluid-fluxed or dehydration melting reactions. Integrating our results and other Early Paleozoic orogenic sedimentary, metamorphic, and magmatic records of South China, we inferred that the Jianning leucogranites were formed during the syn-orogenic crustal thickening phase, and the 410~405 Ma anatectic event may be related to the post-orogenic crustal thinning.
-
-
陈竹新, 贾东, 张惬, 等, 2005. 龙门山前陆褶皱冲断带的平衡剖面分析[J]. 地质学报, 79(1): 38-45.
何红蓼, 李冰, 韩丽荣, 等, 2002. 封闭压力酸溶-ICP-MS 法分析地质样品中 47 个元素的评价[J]. 分析试验室, 21(5):8-12.
侯可军, 李延河, 田有荣, 2009. LA-MC-ICP-MS 锆石微区原位U-Pb 定年技术[J]. 矿床地质, 28(4): 481-492.
李献华, 王一先, 赵振华, 等, 1998. 闽浙古元古代斜长角闪岩的离子探针锆石U-Pb 年代学[J]. 地球化学, 27(4): 327-334.
刘锐, 张利, 周汉文, 等, 2008. 闽西北加里东期混合岩及花岗岩的成因: 同变形地壳深熔作用[J]. 岩石学报, 24(6):1205-1222.
舒良树, 于津海, 贾东, 等, 2008. 华南东段早古生代造山带研究[J]. 地质通报, 27(10): 1581-1593.
舒良树, 2012. 华南构造演化的基本特征[J]. 地质通报, 31(7):1035-1053.
吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb 年龄解释的制约[J]. 科学通报, 49(16): 1589-1604.
徐先兵, 张岳桥, 舒良树, 等, 2010. 武夷山地区前寒武纪地层沉积时代研究[J]. 地层学杂志, 34(3): 254-267.
于津海, 楼法生, 王丽娟, 等, 2014. 赣东北弋阳早古生代麻粒岩的发现及其地质意义[J]. 科学通报, 59(35): 3508-3516.
曾令森, 高利娥, 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报, 33(5): 1420-1444.
曾雯, 张利, 周汉文, 等, 2008. 华夏地块古元古代基底的加里东期再造: 锆石U-Pb 年龄、Hf 同位素和微量元素制约[J].科学通报, 53(3): 335-344.
张芳荣, 舒良树, 王德滋, 等, 2010. 江西付坊花岗岩体的年代学、地球化学特征及其成因研究[J]. 高校地质学报, 16(2):161-176.
BEA F, 1996. Controls on the trace element composition of crustal melts[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 87(1-2): 33-41.
BROWN M, 1994. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens[J]. Earth-Science Reviews, 36(1-2):83-130.
BROWN M, 2010. Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust[C]//Lithoprobe- arameters, processes, and the evolution of a continent. Canadian Journal of Earth Sciences, 47(5): 655-694.
BURDA J, GAW
DA A, 2009. Shear-influenced partial melting in the Western Tatra metamorphic complex: Geochemistry and geochronology[J]. Lithos, 110(1-4): 373-385.
CHARVET J, 2013. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block: An overview[J]. Journal of Asian Earth Sciences, 74: 198-209.
CHARVET J, SHU Liangshu, FAURE M, et al., 2010. Structural development of the Lower Paleozoic belt of South China:Genesis of an intracontinental orogen[J]. Journal of Asian Earth Sciences, 39(4): 309-330.
CHEN Chenghong, LEE Chiyu, LIU Yunghsin, et al., 2018.Precambrian protoliths and Phanerozoic overprinting on the Wuyishan terrain (South China): New evidence from a combination of LA-ICPMS zircon and EMP monazite geochronology[J]. Precambrian Research, 307: 229-254.
CHEN D, TUCKER M E, ZHU J, et al., 2001. Carbonate sedimentation in a starved pull-apart basin, Middle to Late Devonian, southern Guilin, South China[J]. Basin Research, 13(2): 141-167.
CHEN Zhuxin, JIA Dong, ZHANG Qie, et al., 2005. Balanced Cross-section Analysis of the Fold-Thrust Belt of the Longmen Mountains[J]. Acta Geologica Sinica, 79(1): 38-45(in Chinese with English abstract).
CHU Yang, FAURE M, LIN Wei, et al., 2012. Early Mesozoic tectonics of the South China block: Insights from the Xuefengshan intracontinental orogen[J]. Journal of Asian Earth Sciences, 61: 199-220.
CLARK C, FITZSIMONS I C W, HEALY D, et al., 2011. How Does the Continental Crust Get Really Hot?[J]. Elements, 7:235-240.
CLUZEL D, JOLIVET L, CADET J P, 1991. Early Middle Paleozoic Intraplate Orogeny in the Ogcheon Belt (South Korea): A New Insight on the Paleozoic Buildup of East Asia[J]. Tectonics, 10(6): 1130-1151.
DOUCE A E P, BEARD J S, 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 36(3): 707-738.
DOUCE A E P, BEARD J S, 1996. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes[J].Journal of Petrology, 37(5): 999-1024.
DOUCE A E P, HARRIS N, 1998. Experimental constraints on Himalayan anatexis[J]. Journal of petrology, 39(4): 689-710.
FAURE M, SHU Liangshu, WANG Bo, et al., 2009.Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China[J]. Terra Nova, 21(5):360-368.
FENG Shangjie, ZHAO Kuidong, LING Hongfei, et al., 2014.Geochronology, elemental and Nd-Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China:Constraints on petrogenesis and post-collisional extension of the Wuyi-Yunkai orogeny[J]. Lithos, 206-207: 1-18.
GAO Lie, ZENG Lingsen, ASIMOW P D, 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology, 45(1): 39-42.
GUAN Yili, YUAN Chao, SUN Min, et al., 2014. I-type granitoids in the eastern Yangtze Block: implications for the Early Paleozoic intracontinental orogeny in South China[J]. Lithos, 206-207: 34-51.
GUO Jingliang, GAO Shan, WU Yuanbao, et al., 2014. 3.45 Ga granitic gneisses from the Yangtze Craton, South China:Implications for Early Archean crustal growth[J]. Precambrian Research, 242: 82-95.
HE Hongliao, LI Bing, HAN Lirong, et al., 2002. Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICPMS[J]. Chinese Journal of Analysis Laboratory, 21(5): 8-12(in Chinese with English abstract).
HOU Kejun, LI Yanhe, TIAN Yourong, 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS[J].Mineral Deposits, 28(4): 481-492(in Chinese with English abstract).
HUANG Dingling, WANG Xiaolei, 2019. Reviews of geochronology, geochemistry, and geodynamic processes of Ordovician-Devonian granitic rocks in southeast China[J].Journal of Asian Earth Sciences, 184: 104001.
HUANG Dingling, WANG Xiaolei, XIA Xiaoping, et al., 2020.Crustal anatexis recorded by zircon grains from early Paleozoic granitic rocks in Southeast China[J]. Lithos, 370-371: 105598.
HUANG Xiaolong, YU Yang, LI Jie, et al., 2013. Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: Middle-lower crustal melting during orogenic collapse[J]. Lithos, 177: 268-284.
JIA Dong, WEI Guoqi, CHEN Zhuxin, et al., 2006. Longmen Shan fold-thrust belt and its relation to the western Sichuan Basin in central China: New insights from hydrocarbon exploration[J]. AAPG Bulletin, 90(9): 1425-1447.
LI Jianhua, DONG Shuwen, CAWOOD P A, et al., 2018. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling[J]. Earth and Planetary Science Letters, 490: 170-179.
LI Jianhua, DONG Shuwen, CAWOOD P A, et al., 2023.Cretaceous long-distance lithospheric extension and surface response in South China[J]. Earth-Science Reviews, 243:104496.
LI Jianhua, DONG Shuwen, GAO Rui, et al., 2022. The thinnest crust in South China associated with the Cretaceous lithospheric extension: Evidence from SINOPROBE seismic reflection profiling[J]. Tectonics, 41(8): e2022TC007240.
LI Jianhua, DONG Shuwen, ZHANG Yueqiao, et al., 2016. New insights into Phanerozoic tectonics of south China: Part 1, polyphase deformation in the Jiuling and Lianyunshan domains of the central Jiangnan Orogen[J]. Journal of Geophysical Research: Solid Earth, 121(4): 3048-3080.
LI Jianhua, MA Zhili, ZHANG Yueqiao, et al., 2014a. Tectonic evolution of Cretaceous extensional basins in Zhejiang Province, eastern South China: structural and geochronological constraints[J]. International Geology Review, 56(13): 1602-1629.
LI Jianhua, ZHANG Yueqiao, DONG Shuwen, et al., 2014b.Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth-Science Reviews, 134: 98-136.
LI Jianhua, ZHANG Yueqiao, ZHAO Guochun, et al., 2017. New insights into Phanerozoic tectonics of South China: Early Paleozoic sinistral and Triassic dextral transpression in the east Wuyishan and Chencai domains, NE Cathaysia[J].Tectonics, 36(5): 819-853.
LI Longming, SUN Min, WANG Yuejun, et al., 2011. U-Pb and Hf isotopic study of zircons from migmatised amphibolites in the Cathaysia Block: Implications for the early Paleozoic peak tectonothermal event in Southeastern China[J]. Gondwana Research, 19(1): 191-201.
LI Xianhua, LI Wuxian, LI Zhengxiang, et al., 2009.Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1-2): 117-128.
LI Xianhua, WANG Yixian, ZHAO Zhenhua, et al., 1998. SHRIMP U-Pb zircon geochronology for amphibolite from the Precambrian basement in SW Zhejiang and NW Fujian Provinces[J]. Geochimica, 27(4): 327-334(in Chinese with English abstract).
LI Zhengxiang, LI Xianhua, WARTHO J A, et al., 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 122(5-6): 772-793.
LIN Shoufa, WANG Lijun, XIAO Wenjiao, et al., 2023. The early Paleozoic Wuyi-Yunkai orogeny in South China: a collisional orogeny with a major lag in time between onset of collision and peak metamorphism in subducted continental crust[J].Geological Society, London, Special Publications, 542(1):SP542-2023.
LIN Wei, WANG Qingchen, CHEN Ke, 2008. Phanerozoic tectonics of south China block: New insights from the polyphase deformation in the Yunkai massif[J]. Tectonics, 27(6): TC6004.
LIU Rui, ZHANG Li, ZHOU Hanwen, et al., 2008. Petrogenesis of the Caledonian migmatites and related granites in northwestern Fujian province, south China: syn-deformational crustal anatexis[J]. Acta Petrologica Sinica, 24(6): 1205-1222(in Chinese with English abstract).
LIU Xiaoming, GAO Shan, DIWU C R, et al., 2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies[J]. American Journal of Science, 308(4):421-468.
LIU Yongsheng, GAO Shan, HU Zhaochu, et al., 2010. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 51(1-2): 537-571.
LIU Yongsheng, HU Zhaochu, GAO Shan, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 257(1-2): 34-43.
MANIAR P D, PICCOLI P M, 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5):635-643.
MIDDEMOST E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224.
QIU Yumin, GAO Shan, MCNAUGHTON N J, et al., 2000. First evidence of > 3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics[J]. Geology, 28(1): 11-14.
REN Jishun, 1991. On the geotectonics of southern China[J]. Acta Geologica Sinica, 4(2): 111-130.
SHU Liangshu, 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract).
SHU Liangshu, CHARVET J, 1996. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: with HP metamorphism and ophiolitic melange(Jiangnan Region, South China)[J]. Tectonophysics, 267(1-4):291-302.
SHU Liangshu, JAHN B M, CHARVET J, et al., 2014. Early Paleozoic depositional environment and intraplate tectono-magmatism in the Cathaysia Block (South China):Evidence from stratigraphic, structural, geochemical and geochronological investigations[J]. American Journal of Science, 314(1): 154-186.
SHU Liangshu, WANG Bo, CAWOOD P A, et al., 2015. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China[J].Tectonics, 34(8): 1600-1621.
SHU Liangshu, YAO Jinlong, WANG Bo, et al., 2021.Neoproterozoic plate tectonic process and Phanerozoic geodynamic evolution of the South China Block[J].Earth-Science Reviews, 216: 103596.
SHU Liangshu, YU Jinhai, JIA Dong, et al., 2008. Early Paleozoic orogenic belt in the eastern segment of South China[J].Geological Bulletin of China, 27(10): 1581-1593(in Chinese with English abstract).
SUN Hanshen, LI Jianhua, ZHANG Yueqiao, et al., 2018. Early Paleozoic tectonic reactivation of the Shaoxing-Jiangshan fault zone: Structural and geochronological constraints from the Chencai domain, South China[J]. Journal of Structural Geology, 110: 116-130.
SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345.
TAYLOR S R, MCLENNAN S M, 1985.The continental crust: Its composition and evolution[M]. California: Blackwell Sciencetific Publications: 312.
VIELZEUF D, HOLLOWAY J R, 1988. Experimental determination of the fluid-absent melting relations in the pelitic system: Consequences for crustal differentiation[J].Contributions to Mineralogy and Petrology, 98: 257-276.
VIELZEUF D, MONTEL J M, 1994. Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships[J]. Contributions to Mineralogy and Petrology, 117(4): 375-393.
WAN Yusheng, LIU Dunyi, XU Meihui, et al., 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units[J]. Gondwana Research, 12(1-2):166-183.
WANG Dan, ZHENG Jianping, MA Qiang, et al., 2013. Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China[J]. Lithos, 175-176: 124-145.
WANG Yuejun, FAN Weiming, ZHANG Guowei, et al., 2013.Phanerozoic tectonics of the South China Block: Key observations and controversies[J]. Gondwana Research, 23(4):1273-1305.
WANG Yuejun, ZHANG Aimei, FAN Weiming, et al., 2011.Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains[J]. Lithos, 127(1-2): 239-260.
WATSON E B, 1996. Dissolution, growth and survival of zircons during crustal fusion: kinetic principals, geological models and implications for isotopic inheritance[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2):43-56.
WEINBERG R F, HASALOVÁ P, WARD L, et al., 2013.Interaction between deformation and magma extraction in migmatites: Examples from Kangaroo Island, South Australia[J]. GSA Bulletin, 125(7-8): 1282-1300.
WEINBERG R F, VEVEAKIS E, REGENAUER-LIEB K, 2015.Compaction-driven melt segregation in migmatites[J].Geology, 43(6): 471-474.
WU Yuanbao, ZHENG Yongfei, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(16): 1589-1604(in Chinese).
XIA Yan, XU Xisheng, NIU Yaoling, et al., 2018. Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: The magmatism in various tectonic settings and continent-rc-continent collision[J]. Precambrian Research, 309: 56-87.
XIA Yan, XU Xisheng, ZOU Haibo, et al., 2014. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites[J]. Lithos, 184-187:416-435.
XIA Yanfei, WANG Lijun, RAYNER N, et al., 2023. Metamorphic P-T-t evolution deciphered from episodic monazite growth in granulites of the Chencai Complex and implications for the Early Paleozoic Orogeny, West Cathaysia terrane, South China[J]. Geological Society, London, Special Publications, 542(1): SP542-2023.
XIN Yujia, LI Jianhua, RATSCHBACHER L, et al., 2020. Early Devonian (415–400 Ma) A-type granitoids and diabases in the Wuyishan, eastern Cathaysia: A signal of crustal extension coeval with the separation of South China from Gondwana[J].GSA Bulletin, 132(11-12): 2295-2317.
XU Wenjing, XU Xisheng, 2015. Early Paleozoic intracontinental felsic magmatism in the South China Block: Petrogenesis and geodynamics[J]. Lithos, 234-235: 79-92.
XU X B, ZHANG Y Q, SHU L S, et al., 2011. La-ICP-MS U-Pb and 40Ar/39Ar geochronology of the sheared metamorphic rocks in the Wuyishan: Constraints on the timing of Early Paleozoic and Early Mesozoic tectono-thermal events in SE China[J]. Tectonophysics, 501(1-4): 71-86.
XU Xianbing, ZHANG Yueqiao, SHU Liangshu, et al., 2010. Precambrian geochronology and stratigraphy in the Wuyishan area, South China[J]. Journal of Stratigraphy, 34(3):255-267(in Chinese with English abstract).
YAN Chaolei, SHU Liangshu, FAURE M, et al., 2019. Time constraints on the closure of the Paleo-South China Ocean and the Neoproterozoic assembly of the Yangtze and Cathaysia blocks: Insight from new detrital zircon analyses[J].Gondwana Research, 73: 175-189.
YAO Jinlong, CAWOOD P A, SHU Liangshu, et al., 2019.Jiangnan orogen, South China: A-970-820 Ma Rodinia margin accretionary belt[J]. Earth-Science Reviews, 196:102872.
YAO Jinlong, SHU Liangshu, CAWOOD P A, et al., 2017.Constraining timing and tectonic implications of Neoproterozoic metamorphic event in the Cathaysia Block, South China[J]. Precambrian Research, 293: 1-12.
YAO Jinlong, SHU Liangshu, SANTOSH M, 2014a.Neoproterozoic arc-trench system and breakup of the South China Craton: Constraints from N-MORB type and arc-related mafic rocks, and anorogenic granite in the Jiangnan orogenic belt[J]. Precambrian Research, 247: 187-207.
YAO Jinlong, SHU Liangshu, SANTOSH M, et al., 2014b.Neoproterozoic arc-related mafic-ultramafic rocks and syn-collision granite from the western segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 243: 39-62.
YU Jinhai, LOU Fasheng, WANG Lijuan, et al., 2014. The geological significance of a Paleozoic mafic granulite found in the Yiyang area of northeastern Jiangxi Province[J]. Chinese Science Bulletin, 59(35): 3508-3516(in Chinese with English abstract).
YU Jinhai, O’REILLY S Y, WANG Lijuan, et al., 2010.Components and episodic growth of Precambrian crust in the Cathaysia Block, South China: Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J].Precambrian Research, 181(1-4): 97-114.
YU Jinhai, O'REILLY Y S, WANG Lijuan, et al., 2007. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust[J]. Chinese Science Bulletin, 52(1): 13-22.
YU Jinhai, WANG Lijuan, O’REILLY S Y, et al., 2009. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane): eastern Cathaysia Block, China[J]. Precambrian Research, 174(3-4): 347-363.
YU Yang, HUANG Xiaolong, HE Pengli, et al., 2016. I-type granitoids associated with the early Paleozoic intracontinental orogenic collapse along pre-existing block boundary in South China[J]. Lithos, 248-251: 353-365.
ZENG Lingsen, GAO Lie, 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J].Acta Petrologica Sinica, 33(5): 1420-1444(in Chinese with English abstract).
ZENG Lingsen, SALEEBY J B, ASIMOW P, 2005a. Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California[J]. Geology, 33(1): 53-56.
ZENG Lingsen, SALEEBY J B, DUCEA M, 2005b. Geochemical characteristics of crustal anatexis during the formation of migmatite at the Southern Sierra Nevada, California[J].Contributions to Mineralogy and Petrology, 150: 386-402.
ZENG Wen, ZHANG Li, ZHOU Hanwen, et al., 2008. Caledonian reworking of Paleoproterozoic basement in the Cathaysia Block: Constraints from zircon U-Pb dating, Hf isotopes and trace elements[J]. Chinese Science Bulletin, 53(3): 335-344(in Chinese).
ZHANG Chuanlin, SANTOSH M, ZHU Qingbo, et al., 2015. The Gondwana connection of South China: Evidence from monazite and zircon geochronology in the Cathaysia Block[J].Gondwana Research, 28(3): 1137-1151.
ZHANG Fangrong, SHU Liangshu, WANG Dezi, et al., 2010.Study on Geochronological, Geochemical Features and Genesis of the Fufang Granitic Pluton in the Jiangxi Province, South China[J]. Geological Journal of China Universities, 16(2): 161-176(in Chinese with English abstract).
ZHANG Jin, QU Junfeng, ZHANG Beihang, et al., 2018.Paleozoic to Mesozoic deformation of eastern Cathaysia: A case study of the Chencai complex, Zhejiang Province, eastern China, and its tectonic implications[J]. GSA Bulletin, 130(1-2): 114-138.
ZHANG Xisong, XU Xisheng, XIA Yan, et al., 2017. Early Paleozoic intracontinental orogeny and post-orogenic extension in the South China Block: Insights from volcanic rocks[J]. Journal of Asian Earth Sciences, 141: 24-42.
ZHENG Jianping, GRIFFIN W L, O'REILLY S Y, et al., 2006.Widespread Archean basement beneath the Yangtze craton[J].Geology, 34(6): 417-420.
-
计量
- 文章访问数: 34
- PDF下载数: 4
- 施引文献: 0