Enrichment Mechanism of Gold in the Yanlinsi Gold Ore Concentration Area, Northeastern Hunan: Evidence from Fluid Inclusions and Isotopes
-
摘要: 湘东北雁林寺金矿集区是湖南重要的独立金矿产基地之一, 一直以来众多学者对于矿集区内金的沉淀富集机制争论不休。本文通过对金矿成矿流体包裹体及同位素组成研究, 反演了成矿流体演化过程和流体地球化学条件变化, 了解了金富集成矿的关键机制。研究结果表明: 矿集区内的金矿床流体包裹体类型有含CO2 包裹体(C 型)和水溶液包裹体(W 型), 包裹体均一温度范围主要为143~231 ℃, 盐度主要分布在(2~9) wt% NaClequiv, 成矿流体为中低温、低盐度的CO2-H2O-NaCl 体系。矿集区的成矿流体δ18O 值范围为4.5‰~9.7‰, δD 值的变化范围为–66.8‰ ~ –46‰。方解石 δ13CVPDB 为–4.7‰ ~ –3.7‰, δ18OSNOW 为10.6‰~15.0‰。矿集区的C-H-O 同位素组成表明成矿流体性质可能为变质水, 与流体包裹体特征反应的结果一致。矿集区内Au 以 络合物形式赋存于低温、低盐度的CO2-H2O-NaCl 变质流体体系进行迁移, 流体的不混溶作用是金矿富集成矿的关键。Abstract: The Yanlinsi gold ore concentration area, located in northeastern China, remains one of the single gold deposit bases in Hunan Province. The mechanism of gold precipitation and enrichment in this area has been widely debated among scholars, and determining the metallogenic mechanism of gold deposits is crucial for guiding the prospecting of precious metal gold. This study identifies the evolution process of ore-forming fluids and the key mechanism of changes in fluid geochemical conditions that restrict gold enrichment and mineralization in the area by examining the temperature, pressure, gas-liquid phase composition, and isotopic compositions of fluid inclusions. Petrography and microthermometry of the fluid inclusions revealed the presence of CO2-containing inclusions (C-type) and aqueous inclusions (W-type) in the gold deposits of the study area. The homogenization temperature range of the inclusions in Tuanshanbei and Yanlinsi deposits is 143–231 ℃ and the salinity range is (2–9) wt%, indicating that the ore-forming fluid is a CO2-H2O-NaCl system with low temperature and low salinity. The δ18O value of the ore-forming fluid in the gold ore concentration area range from 4.5‰ to 9.7‰, and the δD value range from –66.8‰ to –46‰. The δ13CVPDB value of the calcites range from –4.7‰ to–3.7‰, and δ18OSNOW value range from 10.6‰ to 15.0‰. The δD-δ18O binary diagram of the gold ore concentration area suggests that the ore-forming fluid may be metamorphic water or magmatic water. The C-H-O isotope composition of the ore concentration area indicated that the ore-forming fluid is likely metamorphic water, consistent with the results of the fluid inclusion characteristics. Au exists and migrates in the form of an complex within the low-temperature and low-salinity CO2-H2O-NaCl metamorphic fluid system, with the addition of atmospheric water, and Au deposits are formed by fluid immiscibility.
-
-
黄诚, 樊光明, 姜高磊, 等, 2012. 湘东北雁林寺金矿构造控矿特征及金成矿 ESR 测年[J]. 大地构造与成矿学, 36(1):78-86.
刘清泉, 邵拥军, 陈昕梦, 等, 2017. 大别造山带姚冲花岗岩岩石地球化学特征及其地质意义[J]. 地质通报, 36(Z1):429-444.
卢焕章, 2003. 现代海底烟囱中流体包裹体的研究[J]. 岩石学报, 19(2): 235-241.
陆文, 孙骥, 周超, 等, 2020. 湘东北雁林寺金矿床成矿物质来源及成矿流体类型[J]. 地球学报, 41(3): 384-394.
舒良树, 2012. 华南构造演化的基本特征[J]. 地质通报, 31(7):1035-1053.
孙骥, 肖荣, 周超, 等, 2019. 浏阳-醴陵地区金集区成矿背景与找矿启示(内部材料)[Z]. 长沙: 湖南省地质调查所.
杨丹, 徐文艺, 2014. 多种矿物流体包裹体中液相阴阳离子的同时测定[J]. 岩石矿物学杂志, 33(3): 591-596.
郑永飞, 李一良, 龚冰, 2001. 大别-苏鲁造山带榴辉岩及其中磷灰石的碳同位素地球化学[J]. 矿物岩石地球化学通报, 20(4): 312-316.
BROWN P E, LAMB W M, 1989. P-V-T properties of fluids in the system H2O±CO2±NaCl: New graphical presentations and implications for fluid inclusion studies[J]. Geochimica et Cosmochimica Acta, 53(6): 1209-1221.
CLAYTON R N, O'NEIL J R, MAYEDA T K, 1972. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 77(17): 3057-3067.
EVANS K A, POWELL R, HOLLAND T J B, 2010. Internally consistent data for sulphur-bearing phases and application to the construction of pseudosections for mafic greenschist facies rocks in Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-CO2-O-S-H2O[J]. Journal of Metamorphic Geology, 28(6): 667-687.
GOLDFARB R J, GROVES D I, 2015. Orogenic gold: Common or evolving fluid and metal sources through time[J]. Lithos, 233(15): 2-26.
GUPTA S, JAYANANDA M, 2014. Tourmaline from the Archean G.R.Halli gold deposit, Chitradurga greenstone belt, Dharwar craton (India): Implications for the gold metal-ogeny[J]. Geoscience Frontiers, 5(6): 877-892.
HUANG Cheng, FAN Guangming, JIANG Gaolei, et al., 2012.Structural Ore-Controlling Characteristics and Electron Spin Resonance Dating of the YanLinsi Gold Deposit in Northeastern Hunan Province[J]. Geotectonica et Metallogenia, 36(1): 78-86(in Chinese with English abstract).
LIU Qingquan, SHAO Yongjun, CHEN Xinmeng, et al., 2017.Geochemistry of the Yaochong granite in Dabie orogenic belt and its geological implications[J]. Geological Bulletin of China, 36(2/3): 429-444(in Chinese with English abstract).
LU Huanzhang, 2003. Ore forming fluids in recent ocean ridge sea floor mineralization: samples from 21°N, Pacific Ocean[J].Acta Petrologica Sinica, 19(2): 235-241(in Chinese with English abstract).
LU Wen, SUN Ji, ZHOU Chao, GUO Aimin, et al., 2020. A Study of the source of Metallogenic Material and Characteristics of the Ore-forming Fluid in the Yanlinsi Gold Deposit in Northeastern Hunan Province[J]. Acta Geoscientica Sinica, 41(3):384-394(in Chinese with English abstract).
MCCUAIG T, KERRICH R, 1998. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics[J]. Ore Geology Reviews, 12(6): 381-453.
PHILLIPS G N, POWELL R, 2010. Formation of gold deposits: A metamorphic devolatilization model[J]. Journal of Metamorphic Geology, 28(6): 689-718.
RIDLEY J R, DIAMOND L W, 2000. Fluid chemistry of orogenic lode gold deposits and implications for genetic models[J].Reviews in Economic Geology, 13: 141-162.
ROEDDER E, 1984. Fluid Inclusions[M]//RIBBE H P, Reviews in Mineralogy. Washington DC: Mineralogical Society of America.
SHU Liangshu, 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract).
SPOONER E T C, 1991. The magmatic model for the origin of Archean Au-quartz vein ore systems: An assessment of the evidence[C]. Brazil Gold, 91: 313-318.
SUN Ji, XIAO Rong, ZHOU Chao, et al., 2019. Metallogenic setting and prospecting inspiration of the gold District, Liuyang-Liling area (internal materials)[Z]. Changsha: Geological Survey Institute of Hunan Province(in Chinese).
TAYLOR S R, MCLENNAN S M, 1985.The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks[M]. Oxford:Blackwell Scientific Publications.
WANG Cheng, SHAO Yongjun, EVANS N J, et al., 2020. Genesis of Zixi gold deposit in Xuefengshan, Jiangnan Orogen (South China): Age, geology and isotopic constraints[J]. Ore Geology Reviews, 117: 103301.
YANG Dan, XU Wenyi, 2014. Ion chromatogram method for the determination of liquid composition of fluid inclusions in several common minerals by using a trace amount of sample[J]. Acta Petrologica et Mineralogica, 33(3): 591-596(in Chinese with English abstract).
ZHAO Guochun, CAWOOD P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54.
ZHENG Yongfei, LI Yiliang, GONG Bing, 2001. Carbon Isotopes Geochemistry of Eclogite and Enclosed Apatite Separate from the Dabie-Sulu Orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 312-316(in Chinese with English abstract).
-
计量
- 文章访问数: 35
- PDF下载数: 7
- 施引文献: 0