Petroleum Geochemical Characteristics and Oil Source Correlation of Buqu Formation in Shenglihe Area, Qiangtang Basin
-
摘要: 羌塘盆地胜利河地区侏罗系海相地层的地表露头有大量的油气显示。以往研究表明该地区发育多套含油气系统, 油气性质复杂。本次研究在前人工作基础上, 以中侏罗统布曲组(J2b)中部油页岩露头、探井岩心的油气显示以及地表油气显示为主要研究对象。通过TOC 分析、岩石热解、饱和烃色谱和饱和烃色谱-质谱的分析, 更为详细地研究了胜利河地区烃源岩类型, 对原油来源进行了进一步探讨, 为该地区下一步油气勘探工作提供更多的理论依据。研究表明, 该地区J2b 组中部油页岩有机质类型以Ⅱ型为主, 具有较高的生油潜力。该地区原油主要来源于还原性海相沉积环境。研究区样品的有机质输入主要以低等水生生物为主, DB4142以低等水生生物和高等植物混合贡献, BD4902 以高等植物输入为主。原油处于成熟阶段, 所有样品均检测出25-降藿烷系列的化合物, 指示样品均遭受了较为强烈的生物降解作用。依据生物标志物指纹特征和生物标志化合物参数特征, 运用聚类分析方法, 将研究区原油划分为A、B、C、D 四类。其中A 类原油主要来自于同层位(J2b)的烃源岩, 而B、C、D 类原油没有或者很少有该套烃源岩(J2b)的贡献, 可能来自其它层位烃源岩贡献。
-
关键词:
- 羌塘盆地 /
- 烃源岩 /
- 生物标志化合物, 地球化学 /
- 油源对比 /
-  
Abstract: Surface outcrops of Jurassic marine strata in the Shenglihe area of the Qiangtang Basin contain a large amount of petroleum. Previous research indicated the presence of multiple petroleum systems with complex properties. Based on previous research, the main research objects of this study were the petroleum display of the central oil shale outcrop, exploration well core, and surface oil and gas display of the Middle Jurassic Buqu Formation (J2b). Through TOC analysis, rock pyrolysis, saturated hydrocarbon chromatography, and saturated hydrocarbon chromatography-mass spectrometry, the source rock types and oil sources in the Shenglihe area were studied in detail, providing a theoretical basis for further petroleum exploration. The results show that the organic matter within the J2b middle stratum was primarily Type II, which has a high potential for oil generation. The oil predominantly originates from reduced marine sedimentary environments. The organic matter input of the samples in the study area was mainly lower aquatic organisms; DB4142 was mixed with lower aquatic organisms and higher plants; and BD4902 mainly contained higher plants. The oil reached maturity, as evidenced by 25-norholane series compounds in all the samples, suggesting a history of significant biodegradation. Using cluster analysis based on fingerprint and biomarker parameter characteristics, we classified the oil into four categories: A, B, C, and D. Class A oil mainly comes from the source rocks of the same horizon (J2b), whereas Classes B, C, and D exhibit little to no contribution from the J2b source rocks and may come from other horizon source rocks.-
Key words:
- Qiangtang Basin /
- source rock /
- biomarker /
- geochemistry /
- oil-source correlation
-
-
季长军, 2015. 南羌塘坳陷油藏带生物标志化合物特征及油源对比研究[D]. 成都: 成都理工大学.
李继东, 徐田武, 唐友军, 等, 2019. 东濮凹陷马厂地区原油地球化学特征与油源对比[J]. 断块油气田, 26(4): 426-428, 479.
史忠生, 程顶胜, 白洁, 等, 2023. 非洲Melut 盆地北部不同地区原油有机地球化学特征及意义[J]. 地质学报, 97(5):1598-1609.
苏鹏, 胡守志, 李水福, 等, 2023. 走滑断裂对原油性质的控制作用: 以鄂尔多斯盆地南部泾河油田为例[J]. 地球科学, 48(6): 2310-2323.
王剑, 付修根, 陈文西, 等, 2007. 藏北北羌塘盆地晚三叠世古风化壳地质地球化学特征及其意义[J]. 沉积学报, 25(4):487-494.
吴珍汉, 姚建明, 季长军, 等, 2022. 羌塘北部胜利河地区液态原油及生烃史分析[J]. 地质学报, 96(11): 3698-3704.
杨桂芳, 藤玉洪, 卓胜广, 等, 2003. 藏北羌塘盆地双湖地区油气成藏条件[J]. 地质通报, 22(4): 285-289.
杨易卓, 黄志龙, 赵珍, 等, 2022. 羌塘盆地毕洛错地区古油藏地球化学特征与油源对比[J]. 地球科学, 47(5): 1834-1848.
于珺, 李娜, 胡春桥, 等, 2023. 南羌塘坳陷古油藏原油生物降解作用及意义[J]. 地球学报, 44(6): 1053-1061.
CHEN Zhonghong, CHAI Zhi, CAO Yingchang, et al., 2019. Suppression of thermal maturity indicators in lacustrine source rocks: A case study of Dongying Depression, eastern China[J].Marine and Petroleum Geology, 109: 108-127.
CHENG Qingsong, HUANG Guanghui, ZHANG Min, et al., 2019.Distribution and source significance of 2-methylalkanes in coal-measure source rocks, northwest China[J]. Journal of Petroleum Science and Engineering, 174: 257-267.
DEMBICKI J H, 2009. Three common source rock evaluation errors made by geologists during prospect or play appraisals[J]. AAPG Bulletin, 93(3): 341-356.
HAO Fang, ZHOU Xinhuai, ZHU Yangming, et al., 2011. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 42(4): 323-339.
HUANG Wenyen, MEINSCHEIN W G, 1979. Sterols as ecological indicators[J]. Geochimica et Cosmochimica Acta, 43(5):739-745.
JI Changjun, 2015. Biomarker characteristics and Oil-source Correlation Research of the Reservoirs in Southern Qiangtang Depression[D]. Chengdu: Chengdu University of Technology(in Chinese with English abstract).
LANGFORD F F, BLANC-VALLERON M M, 1990. Interpreting rock-eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon[J]. AAPG Bulletin, 74(6):799-804.
LI Jidong, XU Tianwu, TANG Youjun, et al., 2019. Geochemical characteristics and source correlation of crude oil in Machang area, Dongpu Depression[J]. Fault-Block Oil & Gas Field, 26(4): 426-428, 479(in Chinese with English abstract).
MACKENZIE A S, BEAUMONT C, MCKENZIE D P, 1984. Estimation of the kinetics of geochemical reactions with geophysical models of sedimentary basins and applications[J].Organic Geochemistry, 6: 875-884.
PETERS K E, 2000. Petroleum tricyclic terpanes: predicted physicochemical behavior from molecular mechanics calculations[J]. Organic Geochemistry, 31(6): 497-507.
PETERS K E, MOLDOWAN J M, 1993.The biomarker guide:Interpreting molecular fossils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall, Inc.
PETERS K E, WALTERS C C, MOLDOWAN J M, 2005.The Biomarker Guide[M]. Cambridge: Cambridge University Press.
PHILP R P, GILBERT T D, 1986. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 10(1-3): 73-84.
RULLKÖTTER J, WENDISCH D, 1982. Microbial alteration of 17α(H)-hopanes in Madagascar asphalts: removal of C-10 methyl group and ring opening[J]. Geochimica et Cosmochimica Acta, 46(9): 1545-1553.
RUPPERT L F, HOWER J C, RYDER R T, et al., 2010. Geologic controls on thermal maturity patterns in Pennsylvanian coal-bearing rocks in the Appalachian basin[J]. International Journal of Coal Geology, 81(3): 169-181.
SHEN Anjiang, FU Xiaodong, ZHANG Jianyang, et al., 2023.Characteristics and discovery significance of the Upper Triassic-Lower Jurassic marine shale oil in Qiangtang Basin, NW China[J]. Petroleum Exploratoin and Development, 50(5):962-974(in Chinese with English abstract).
SHI Zhongsheng, CHENG Dingsheng, BAI Jie, et al., 2023. Organic geochemical characteristics and significance of crude oils in different areas in the northern Melut basin, Africa[J].Acta Geologica Sinica, 97(5): 1598-1609(in Chinese with English abstract).
SU Peng, HU Shouzhi, LI Shuifu, et al., 2023. Control of Strike-Slip Faults on Crude Oil Properties: Exemplified by Jinghe Oilfield in South Ordos Basin[J]. Earth Science, 48(6):2310-2323(in Chinese with English abstract).
WANG Jian, FU Xiugen, CHEN Wenxi, et al., 2007. The Late Triassic Paleo-weathering Crust in the Qiangtang Basin, Northern Tibet: geology, geochemistry and significance[J].Acta Sedimentologica Sinica, 25(4): 487-494(in Chinese with English abstract).
WU Zhenhan, YAO Jianming, JI Changjun, et al., 2022. Crude oil and formation history of hydrocarbon in the Shenglihe area, northern Qiangtang basin[J]. Acta Geologica Sinica, 96(11):3698-3704(in Chinese with English abstract).
YANG Guifang, TENG Yuhong, ZHUO Shengguang, et al., 2003.Conditions for the formanion of petroleum accumulations in the Shuanghu area, Qiangtang basin, northern Tibet[J]. Geological Bulletin of China, 22(4): 285-289(in Chinese with English abstract).
YANG Yizhuo, HUANG Zhilong, ZHAO Zhen, et al., 2022.Geochemical Characteristics and Oil Source Correlation of Paleo-Reservoirs in Biluocuo Area, Qiangtang Basin[J].Earth Science, 47(5): 1834-1848(in Chinese with English abstract).
YIN Jie, XU Changgui, HAO Fang, et al., 2020. Controls on organic matter enrichment in source rocks of the Shahejie Formation in the southwestern Bozhong Sag, Bohai Bay Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 110026.
YU Jun, LI Na, HU Chunjiao, et al., 2023. Biodegradation of Crude Oil in Paleo-oil Reservoirs in South Qiangtang Basin and Its Significance[J]. Acta Geoscientica Sinica, 44(6):1053-1061(in Chinese with English abstract).
-
计量
- 文章访问数: 44
- PDF下载数: 3
- 施引文献: 0