Deep Magmatism Response to Cenozoic E–W Extension in the Southern Tibet
-
摘要: 随着新生代喜马拉雅山链的崛起, 西藏南部经历了显著的东西向伸展作用, 形成一系列近南北向展布的裂谷。伴随着增厚岩石圈的对流减薄或者拆沉, 软流圈上涌, 藏南岩石圈地幔和中下地壳发生顺次部分熔融作用, 形成岩石学和地球化学特征各异的岩浆岩, 具体表现为: 1)富集岩石圈地幔部分熔融, 形成碳酸质、煌斑质和超钾质岩浆岩; 2)增厚基性下地壳部分熔融, 形成高Sr/Y 比值的花岗岩; 3)中-下地壳变沉积岩发生白云母脱水/含水部分熔融, 形成典型淡色花岗岩。这些新发现限定了藏南裂谷系的启动时限不晚于~30 Ma, 为解译世界上造山带和陆内伸展作用过程中大陆岩石圈深部熔融的精细模式提供了典型实例。Abstract: With the rise of the Himalayan chain during the Cenozoic, southern Tibet experienced significant east–west extension, forming a series of north–south trending rifts. Along with the convective thinning or delamination of the thickened lithosphere, due to asthenospheric upwelling, sequential partial melting of the lithospheric mantle and middle-lower crust induced the formation of magmatic rocks with different petrological and geochemical characteristics. First, the partial melting of the enriched lithospheric mantle resulted in the formation of carbonatites, lamproites, and ultrapotassic rocks. Then, partial melting of the thickened basal lower-crust-derived granites with high Sr/Y ratio. Finally, the middle- and lower-crust metamorphic sedimentary rocks underwent fluid-fluxed or fluid-absent melting of muscovite, forming leucogranites. These new discoveries suggest that the initiation of the north–south trending rifts could have occurred as early as ~30 Ma and provide a typical example for interpreting the precise melting patterns of the continental lithosphere in orogenic belts and intracontinental extensional processes worldwide.
-
Key words:
- silicocarbonatite /
- lamproite /
- sequential melting /
- fluid-fluxed melting /
- extension /
- Southern Tibet
-
-
侯增谦, 赵志丹, 高永丰, 等, 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 22(4): 761-774.
李光明, 付建刚, 郭伟康, 等, 2022. 西藏喜马拉雅成矿带东段嘎波伟晶岩型锂矿的发现及其意义[J]. 岩石矿物学杂志, 41(6): 1109-1119.
秦克章, 赵俊兴, 何畅通, 等, 2021. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义[J]. 岩石学报, 37(11): 3277-3286.
王二七, 2006. 青藏高原新生代地壳变形对同碰撞岩浆侵位的制约[J]. 岩石学报, 22(3): 558-566.
王汝成, 吴福元, 谢磊, 等, 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究[J]. 中国科学: 地球科学, 47(8):871-880.
吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩[J].岩石学报, 31(1): 1-36.
吴福元, 王汝成, 刘小驰, 等, 2021. 喜马拉雅稀有金属成矿作用研究的新突破[J]. 岩石学报, 37(11): 3261-3276.
曾令森, 高利娥, 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报, 33(5): 1420-1444.
张进江, 2007. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 26(6): 639-649.
赵志丹, 刘栋, 王青, 等, 2018. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 25(6): 124-135.
赵志丹, 莫宣学, 孙晨光, 等, 2008. 青藏高原南部地幔包体的发现及其意义[J]. 岩石学报, 24(2): 193-202.
赵志丹, 唐演, 朱弟成, 等, 2021. 青藏高原南部岩脉分布及其研究意义[J]. 岩石学报, 37(11): 3399-3412.
CAO Huawen, PEI Qiuming, SANTOSH M, et al., 2022.Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth-Science Reviews, 234: 104229.
CASALINI M, AVANZINELLI R, TOMMASINI S, et al., 2022.Petrogenesis of Mediterranean lamproites and associated rocks: the role of overprinted metasomatic events in the post-collisional lithospheric upper mantle[J]. Geological Society, London, Special Publications, 513(1): 271-296.
CHEN Han, HU Guyue, ZENG Lingsen, et al., 2022. Miocene Crustal Anatexis of Paleozoic Orthogneiss in the Zhada Area, Western Himalaya[J]. Acta Geologica Sinica (English Edition), 96(3): 954-971.
CHENG Lining, ZHANG Chao, LIU Xiaochi, et al., 2021.Significant boron isotopic fractionation in the magmatic evolution of Himalayan leucogranite recorded in multiple generations of tourmaline[J]. Chemical Geology, 571: 120194.
CHENG Zhihui, GUO Zhengfu, 2017. Post-collisional ultrapotassic rocks and mantle xenoliths in the Sailipu volcanic field of Lhasa terrane, South Tibet: Petrological and geochemical constraints on mantle source and geodynamic setting[J]. Gondwana Research, 46: 17-42.
CHUNG Sunlin, LIU Dunyi, JI Jianqing, et al., 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024.
CLARK M K, ROYDEN L H, 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703-706.
CONTICELLI S, AVANZINELLI R, AMMANNATI E, et al., 2015.The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean[J].Lithos, 232: 174-196.
DING Lin, KAPP P, WAN Xiaoqiao, 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet[J]. Tectonics, 24(3): TC3001.
ENGLAND P, HOUSEMAN G, 1989. Extension during continental convergence, with application to the Tibetan Plateau[J].Journal of Geophysical Research: Solid Earth, 94(B12):17561-17579.
ENGLAND P, HOUSEMAN G, 1988. The mechanics of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 326: 301-320.
FAN Yunsong, ZHANG Jinjiang, LIN Chao, et al., 2021. Miocene granitic magmatism constrains the early E-W extension in the Himalayan Orogen: A case study of Kung Co leucogranite[J].Lithos, 398-399: 106295.
GAO Li’e, ZENG Lingsen, ASIMOW P D, 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology, 45(1): 39-42.
GAO Li’e, ZENG Lingsen, ZHAO Linghao, et al., 2023a.Sequential melting of deep crustal source rocks in a rift system: An example from southern Tibet[J]. Chemical Geology, 618: 121295.
GAO Li’e, ZENG Lingsen, ZHAO Linghao, et al., 2023b.Fluid-fluxed melting in the Himalayan orogenic belt:Implications for the initiation of E-W extension in southern Tibet[J]. Geological Society of America Bulletin, 136(3-4):989-1002.
GAO Li’e, ZENG Lingsen, 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J]. Geochimica et Cosmochimica Acta, 130: 136-155.
GAO Peng, ZHENG Yongfei, ZHAO Zifu, et al., 2021. Source diversity in controlling the compositional diversity of Cenozoic granites in the Tethyan Himalaya[J]. Lithos, 388-389: 106072.
GU Daxiang, ZHANG Jinjiang, LIN Chao, et al., 2022. Anatexis and resultant magmatism of the Ama Drime Massif:Implications for Himalayan mid-Miocene tectonic regime transition[J]. Lithos, 424-425: 106773.
GUO Zhengfu, WILSON M, 2012. The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting[J]. Gondwana Research, 22(2): 360-376.
GUO Zhengfu, WILSON M, 2019. Late Oligocene–early Miocene transformation of postcollisional magmatism in Tibet[J].Geology, 47(8): 776-780.
GUO Zhengfu, WILSON M, ZHANG Maoliang, et al., 2013.Post-collisional, K-rich mafic magmatism in South Tibet:Constraints on Indian slab-to-wedge transport processes and plateau uplift[J]. Contributions to Mineralogy and Petrology, 165(6): 1311-1340.
GUO Zhengfu, WILSON M, ZHANG Maoliang, et al., 2015.Post-collisional Ultrapotassic Mafic Magmatism in South Tibet: Products of Partial Melting of Pyroxenite in the Mantle Wedge Induced by Roll-back and Delamination of the Subducted Indian Continental Lithosphere Slab[J]. Journal of Petrology, 56(7): 1365-1406.
HAO Lulu, WANG Qiang, WYMAN D A, et al., 2019. First identification of postcollisional A-type magmatism in the Himalayan-Tibetan orogen[J]. Geology, 47(2): 187-190.
HE Shaoxiong, LIU Xiaochi, YANG Lei, et al., 2021. Multistage magmatism recorded in a single gneiss dome: Insights from the Lhagoi Kangri leucogranites, Himalayan orogen[J]. Lithos, 398-399: 106222.
HOLTZ F, BARBEY P, 1991. Genesis of Peraluminous Granites II.Mineralogy and Chemistry of the Tourem Complex (North Portugal). Sequential Melting vs. Restite Unmixing[J].Journal of Petrology, 32(5): 959-978.
HOU Zengqian, DUAN Lianfeng, LU Yongjun, et al., 2015.Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen[J].Economic Geology, 110(6): 1541-1575.
HOU Zengqian, ZHAO Zhidan, GAO Yongfeng, et al., 2006.Tearing and dischronal subduction of the Indian continental slab: Evidence from Cenozoic Gangdese volcano-magmatic rocks in South Tibet[J]. Acta Petrologica Sinica, 22(4):761-774(in Chinese with English abstract).
INGER S, HARRIS N, 1993. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya[J]. Journal of Petrology, 34(2): 345-368.
JI Weiqiang, WU Fuyuan, LIU Xiaochi, et al., 2020. Pervasive Miocene melting of thickened crust from the Lhasa terrane to Himalaya, southern Tibet, and its constraint on generation of Himalayan leucogranite[J]. Geochimica et Cosmochimica Acta, 278: 137-156.
KELLEY S P, WARTHO J A, 2000. Rapid kimberlite ascent and the significance of Ar-Ar ages in xenolith phlogopites[J].Science, 289(5479): 609-611.
KLOOTWIJK C T, CONAGHAN P J, POWELL C M, 1985. The Himalayan Arc: Large-scale continental subduction, oroclinal bending and back-arc spreading[J]. Earth and Planetary Science Letters, 75(2-3): 167-183.
KNESEL K M, DAVIDSON J P, 2002. Insights into collisional magmatism from isotopic fingerprints of melting reactions[J].Science, 296(5576): 2206-2208.
LANGILLE J M, JESSUP M J, COTTLE J M, et al., 2012. Timing of metamorphism, melting and exhumation of the Leo Pargil dome, northwest India[J]. Journal of Metamorphic Geology, 30(8):769-791.
LE MAITRE R, STRECKEISEN A, LE BAS M, 2002.Igneous Rocks[M]. Cambridge: Cambridge University Press.
LEE J, WHITEHOUSE M J, 2007. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages[J]. Geology, 35(1): 45-48.
LI Guangming, FU Jiangang, GUO Weikang, et al., 2022. Dicovery of the Gabo granitic pegmatite-type lithium deposit in the Kulagangri Dome, eastern Himalayan metallogenic, and its prospecting implication[J]. Acta Petrologica et Mineralogica, 41(6): 1109-1119(in Chinese with English abstract).
LIN Chao, ZHANG Jingjiang, WANG Xiaoxian, et al., 2020.Oligocene initiation of the South Tibetan Detachment System:Constraints from syn-tectonic leucogranites in the Kampa Dome, Northern Himalaya[J]. Lithos, 354-355: 105332.
LIU Dong, ZHAO Zhidan, ZHU Dicheng, et al., 2014a. Zircon xenocrysts in Tibetan ultrapotassic magmas: Imaging the deep crust through time[J]. Geology, 42(1): 43-46.
LIU Dong, ZHAO Zhidan, ZHU Dicheng, et al., 2014b.Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence[J]. Geochimica et Cosmochimica Acta, 143: 207-231.
LIU Dong, ZHAO Zhidan, ZHU Dicheng, et al., 2015. Identifying mantle carbonatite metasomatism through Os-Sr-Mg isotopes in Tibetan ultrapotassic rocks[J]. Earth and Planetary Science Letters, 430: 458-469.
LIU Shuaiqi, ZHANG Guibin, ZHANG Lifei, et al., 2022a. Boron isotopes of tourmalines from the central Himalaya:Implications for fluid activity and anatexis in the Himalayan Orogen[J]. Chemical Geology, 596: 120800.
LIU Shuaiqi, ZHANG Guibin, ZHANG Lifei, et al., 2022b.Diverse anatexis in the main central thrust zone, eastern Nepal:Implications for melt evolution and exhumation process of the Himalaya[J]. Journal of Petrology, 63(3): egac003.
LIU Xiaochi, WU Fuyuan, KOHN M J, et al., 2022.Plutonic-subvolcanic connection of the Himalayan leucogranites: Insights from the Eocene Lhunze complex, southern Tibet[J]. Lithos, 434-435: 106939.
LIU Xiaochi, WU Fuyuan, YU Liangjun, et al., 2016.Emplacement age of leucogranite in the Kampa Dome, southern Tibet[J]. Tectonophysics, 667: 163-175.
LIU Zhichao, WANG Jiangang, LIU Xiaochi, et al., 2021. Middle Miocene ultrapotassic magmatism in the Himalaya: A response to mantle unrooting process beneath the orogen[J].Terra Nova, 33(3): 240-251.
LIU Zhichao, WU Fuyuan, JI Weiqiang, et al., 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model[J]. Lithos, 208-209:118-136.
MCCAFFREY R, NABELEK J, 1998. Role of oblique convergence in the active deformation of the Himalayas and Southern Tibet Plateau[J]. Geology, 26(8): 691.
MITCHELL R H, BERGMAN S C, 1991.Petrology of lamproites[M]. New York: Plenum Press.
MITSUISHI M, WALLIS S R, AOYA M, et al., 2012. E-W extension at 19 Ma in the Kung Co area, S. Tibet: Evidence for contemporaneous E-W and N-S extension in the Himalayan orogen[J]. Earth and Planetary Science Letters, 325-326: 10-20.
MOLNAR P, TAPPONNIER P, 1978. Active tectonics of Tibet[J].Journal of Geophysical Research: Solid Earth, 83(B11):5361-5375.
PATIÑO DOUCE A E, HARRIS N, 1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology, 39(4):689-710.
PRELEVIĆ D, FOLEY S F, 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: Evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites[J]. Earth and Planetary Science Letters, 256(1-2):120-135.
PRELEVIĆ D, JACOB D E, FOLEY S F, 2013. Recycling plus: A new recipe for the formation of Alpine-Himalayan orogenic mantle lithosphere[J]. Earth and Planetary Science Letters, 362: 187-197.
PRELEVIĆ D, STRACKE A, FOLEY S F, et al., 2010. Hf isotope compositions of Mediterranean lamproites: Mixing of melts from asthenosphere and crustally contaminated mantle lithosphere[J]. Lithos, 119(3-4): 297-312.
PRINCE C, HARRIS N, VANCE D, 2001. Fluid-enhanced melting during prograde metamorphism[J]. Journal of the Geological Society, 158(2): 233-241.
QIN Kezhang, ZHAO Junxing, HE Changtong, et al., 2021.Dicovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China[J]. Acta Petrologica Sinica, 37(11):3277-3286(in Chinese with English abstract).
SEEBER L, ARMBRUSTER J G, 1984. Some elements of continental subduction along the Himalayan front[J].Tectonophysics, 105(1-4): 263-278.
TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982.Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12):611-616.
TIAN Yihong, ZENG Lingsen, SHEN Yu, et al., 2023. Melting a melt-metasomatized subcontinental lithospheric mantle:Evidence from Oligocene lamproites within the Gangdese batholith, southern Tibet[J]. Lithos, 448-449: 107163.
WANG Erqi, 2006. Cenozoic deformation of the Tibetan Plateau:Constraints on emplacement of syn-collisional magma[J].Acta Petrologica Sinica, 22(3): 558-566(in Chinese with English abstract).
WANG Rucheng, WU Fuyuan, XIE Lei, et al., 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet[J]. Scientia Sinica Terrae, 47(8): 871-880(in Chinese).
WILLIAMS H M, TURNER S P, PEARCE J A, et al., 2004. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling[J]. Journal of Petrology, 45(3): 555-607.
WU Fuyuan, LIU Zhichao, LIU Xiaochi, et al., 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1-36(in Chinese with English abstract).
WU Fuyuan, WANG Rucheng, LIU Xiaochi, et al., 2021. New breakthroughs in the studies of Himalayan rare-metal mineralization[J]. Acta Petrologica Sinica, 37(11):3261-3276(in Chinese with English abstract).
XU Bo, GRIFFIN W L, XIONG Qing, et al., 2017. Ultrapotassic rocks and xenoliths from South Tibet: Contrasting styles of interaction between lithospheric mantle and asthenosphere during continental collision[J]. Geology, 45(1): 51-54.
YIN An, 2000. Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research:Solid Earth, 105(B9): 21745-21759.
ZENG Lingsen, GAO Li’e, 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J].Acta Petrologica Sinica, 33(5): 1420-1444(in Chinese with English abstract).
ZENG Lingsen, LIU Jing, GAO Li’e, et al., 2009. Early Oligocene crustal anatexis in the Yardoi gneiss dome, southern Tibet and geological implications[J]. Chinese Science Bulletin, 54(1):104-112.
ZHANG Hongfei, HARRIS N, PARRISH R, et al., 2004. Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform[J]. Earth and Planetary Science Letters, 228(1-2): 195-212.
ZHANG Jinjiang, 2007. A review on the extensional structures in the northern Himalaya and southern Tibet[J]. Geological Bulletin of China, 26(6): 639-649(in Chinese with English abstract).
ZHAO Zhidan, LIU Dong, WANG Qing, et al., 2018. Zircon trace elements and their use in probing deep processes[J]. Earth Science Frontiers, 25(6): 124-135(in Chinese with English abstract).
ZHAO Zhidan, MO Xuanxue, DILEK Y et al., 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet[J]. Lithos, 113(1-2): 190-212.
ZHAO Zhidan, MO Xuanxue, SUN Chenguang, et al., 2008.Mantle xenoliths in southern Tibet: geochemistry and constraints for the nature of the mantle[J]. Acta Petrologica Sinica, 24(2): 193-202(in Chinese with English abstract).
ZHAO Zhidan, TANG Yan, ZHU Dicheng, et al., 2021.Distrubution and its significance of dikes in southern Tibetan Plateau[J]. Acta Petrologica Sinica, 37(11): 3399-3412(in Chinese with English abstract).
ZHENG Yuanchuan, HOU Zengqian, FU Qiang, et al., 2016.Mantle inputs to Himalayan anatexis: Insights from petrogenesis of the Miocene Langkazi leucogranite and its dioritic enclaves[J]. Lithos, 264: 125-140.
-
计量
- 文章访问数: 39
- PDF下载数: 8
- 施引文献: 0