-
摘要: 近年来, 大震频发, 地震发生机制和地震断裂作用的研究已成为当今社会的重大课题, 而断裂带的变形机制, 尤其是大型地震断裂带的变形机制是认识断裂活动性和地震发生机制的关键。本文通过介绍青藏高原东缘龙门山断裂带和鲜水河断裂带的最新研究成果, 探讨青藏高原大型地震断裂带的变形机制, 主要认识如下: (1)汶川地震使不同性质断层同时破裂, 并在地壳浅部(~732.6 m 深度)富流体断层泥中发生了熔融作用, 颠覆了地震的传统认识, 深化了对浅部断层力学性质的认识。(2)龙门山断裂带映秀—北川断裂带在晚三叠世曾经发生Mw7.4~7.9 级的逆冲-左行走滑大地震, 断裂岩的高磁化率各向异性度值指示了大地震活动。(3)汶川—茂县断裂带在新生代时期存在三期不同构造变形, 青藏高原东缘不存在下地壳隧道流模式。(4)龙门山断裂带汶川—茂县断裂带曾经发生了摩擦热温度> 500 ℃的大地震活动, 孕震环境为还原性的含有硫化物的低温热液流体环境。(5)强震频发的鲜水河断裂带是藏东南物质外迁的主要边界, 具有长期蠕滑变形行为, 流体作用较强, 流体的注入明显提高断层核部强矿物含量, 促进了蠕滑断层的局部变强。上述认识丰富和完善了断裂作用理论, 提高了对青藏高原大型地震断裂带变形机制的认识, 为断裂带活动性、地震发生机制、地震危险性评估和防震减灾提供了科学依据。Abstract: Recently, large earthquakes have occurred frequently, and earthquake mechanism and earthquake faulting have become important topics in society. The deformation mechanism of fault zones, especially large earthquake fault zones, is the key to understanding fault activity and earthquake mechanisms. The aim of this study was to discuss the deformation mechanism of the large earthquake fault zone in the Tibetan Plateau by analyzing recent research on the Longmen Shan and Xianshuihe fault zones in the eastern Tibetan Plateau. The results are as follows: (1) The Wenchuan earthquake simultaneously ruptured on different faults and formed a pseudotachylyte vein at an extremely shallow depth (~732.6 m), which was generated in an unconsolidated, fluid-rich fault gouge. This finding overturns our traditional understanding of earthquakes and deepens our understanding of the mechanical properties of shallow faults. (2) A Late Triassic Mw~7.4 to 7.9 earthquake had occurred along the Yingxiu–Beichuan fault, Longmen Shan fault zone, and the focal mechanism of this large magnitude earthquake was left-lateral, strike-slip motion. The high degree of magnetic anisotropy in the fault rocks is an indication of a high-strain seismogenic environment and a new important indicator of large earthquakes. (3) Three deformation phases were identified in the Wenhuan–Maoxian fault zone during the Cenozoic, in contrast to the predictions of the lower crustal channel-flow extrusion models. (4) Large earthquakes with high frictional heating (> 500 °C) have occurred along the Wenhuan–Maoxian fault zone in the past, and the seismogenic environment was a reductive environment with low-temperature hydrothermal fluids. (5) The Xianshuihe fault system is the main boundary for the outward migration of material in southeastern Tibet. The Xianshuihe fault zone, with frequent large earthquakes, exhibits long-term creep deformation behavior. The fluid influx increases the content of strong minerals within the fault core, thereby locally strengthening the creeping fault. These results enrich and improve the faulting theory, improve our understanding of the deformation mechanism of large earthquake fault zones in the Tibetan Plateau, and provide a scientific basis for fault-zone activity, earthquake mechanisms, earthquake risk assessment, and earthquake prevention and reduction.
-
Key words:
- fault rocks /
- deformation mechanism /
- Longmen Shan fault zone /
- Xianshuihe fault zone /
- Tibetan Plateau
-
-
国家地震局震害防御司, 1995.中国历史强震目录: 公元前23世纪-公元1911 年[M]. 北京: 地震出版社.
何祥丽, 李海兵, 张蕾, 等, 2018. 龙门山灌县-安县断裂带断层泥低磁化率的矿物、化学响应和蠕滑作用环境[J]. 地球物理学报, 61(5): 1782-1796.
李海兵, 王宗秀, 付小方, 等, 2008. 2008 年5 月12 日汶川地震(Ms8.0)地表破裂带的分布特征[J]. 中国地质, 35(5):803-813.
李勇, 黄润秋, DENSMORE A L, 等, 2009. 龙门山小鱼洞断裂在汶川地震中的地表破裂及地质意义[J]. 第四纪研究, 29(3): 502-512.
李勇, 周荣军, DENSMORE A L, 等, 2006. 青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J]. 第四纪研究, 26(1): 40-51.
罗良, 贾东, 陈竹新, 等, 2006. 川西北磁组构演化及其揭示的应变特征[J]. 地质通报, 25(11): 1342-1348.
罗良, 贾东, 李一泉, 等, 2008. 构造叠加弱应变沉积岩地区的磁组构研究--以川西北盆地为例[J]. 地质学报, 82(6):850-856.
罗良, 漆家福, 贾东, 等, 2013. 龙门山南段山前天全-乐山剖面磁组构研究及其对新生代构造变形的指示意义[J]. 地球物理学报, 56(2): 558-566.
潘家伟, 李海兵, CHEVALIER M L, 等, 2020. 鲜水河断裂带色拉哈-康定段新发现的活动断层: 木格措南断裂[J]. 地质学报, 94(11): 3178-3188.
王二七, 孟庆任, 2008. 对龙门山中生代和新生代构造演化的讨论[J]. 中国科学(D 辑: 地球科学), 38(10): 1221-1233.
王焕, 李海兵, 司家亮, 等, 2023. 汶川地震假玄武玻璃的特征、成因及其构造意义[J]. 岩石学报, 39(12): 3833-3847.
闻学泽, 2000. 四川西部鲜水河-安宁河-则木河断裂带的地震破裂分段特征[J]. 地震地质, 22(3): 239-249.
闻学泽, ALLEN C R, 罗灼礼, 等, 1989. 鲜水河全新世断裂带的分段性、几何特征及其地震构造意义[J]. 地震学报, 11(4): 362-372.
吴琼, 李海兵, CHEVALIER M L, 等, 2021. 鲜水河断裂带乾宁段岩石特征与内部结构及其物理-化学性质[J]. 岩石学报, 37(10): 3204-3224.
吴琼, 李海兵, CHEVALIER M L, 等, 2023. 鲜水河断裂带乾宁段蠕滑变形及局部粘滑变形的岩石学记录[J]. 岩石学报, 39(12): 3797-3816.
徐晶, 邵志刚, 马宏生, 等, 2013. 鲜水河断裂带库仑应力演化与强震间关系[J]. 地球物理学报, 56(4): 1146-1158.
徐锡伟, 闻学泽, 叶建青, 等, 2008. 汶川Ms8.0 地震地表破裂带及其发震构造[J]. 地震地质, 30(3): 597-629.
许志琴, 李海兵, 吴忠良, 2008. 汶川地震和科学钻探[J]. 地质学报, 82(12): 1613-1622.
张蕾, 李海兵, 孙知明, 等, 2019. 断裂熔融作用中单质铁的形成及其指示的孕震环境[J]. 岩石学报, 35(6): 1875-1891.
张蕾, 李海兵, 孙知明, 等, 2023. 龙门山汶川-茂县断裂带的岩石磁学特征及其地震作用的指示意义[J]. 岩石学报, 39(12):3817-3832.
张蕾, 李海兵, 孙知明, 等, 2018. 龙门山断裂带大地震孕震环境的岩石磁学证据[J]. 地球物理学报, 61(5): 1715-1727.
张培震, 徐锡伟, 闻学泽, 等, 2008. 2008 年汶川8.0 级地震发震断裂的滑动速率、复发周期和构造成因[J]. 地球物理学报, 51(4): 1066-1073.
中国地震局震害防御司, 1999.中国近代地震目录: 公元1912年-1990 年, Ms≥4.7[M]. 北京: 中国科学技术出版社.
ADAMS B A, HODGES K V, 2022. Potential influences of middle and lower crustal flow on landscape evolution: insights from the Himalayan-Tibetan Orogen[M]//SHRODER J F. Treatise on Geomorphology. Amsterdam: Elsevier: 729-748.
ALLEN C R, LUO Zhouli, QIAN Hong, et al., 1991. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China[J]. Geological Society of America Bulletin, 103(9): 1178-1199.
ANDERSEN T B, AUSTRHEIM H, 2006. Fossil earthquakes recorded by pseudotachylytes in mantle peridotite from the Alpine subduction complex of Corsica[J]. Earth and Planetary Science Letters, 242(1-2): 58-72.
ANDREWS D J, 2002. A fault constitutive relation accounting for thermal pressurization of pore fluid[J]. Journal of Geophysical Research: Solid Earth, 107(B12): 2363.
BAI Mingkun, CHEVALIER M L, LELOUP P H, et al., 2021.Spatial slip rate distribution along the SE Xianshuihe Fault, Eastern Tibet, and earthquake hazard assessment[J]. Tectonics, 40(11): e2021TC006985.
BAI Mingkun, CHEVALIER M L, PAN Jiawei, et al., 2018.Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications[J]. Earth and Planetary Science Letters, 485: 19-31.
BARKER S L L, 2005. Pseudotachylyte-generating faults in Central Otago, New Zealand[J]. Tectonophysics, 397(3-4):211-223.
BEDFORD J D, FAULKNER D R, LAPUSTA N, 2022. Fault rock heterogeneity can produce fault weakness and reduce fault stability[J]. Nature Communications, 13: 326.
BOULLIER A M, OHTANI T, FUJIMOTO K, et al., 2001. Fluid inclusions in pseudotachylytes from the Nojima Fault, Japan[J]. Journal of Geophysical Research: Solid Earth, 106(B10): 21965-21977.
BRANTUT N, SCHUBNEL A, CORVISIER J, et al., 2010.Thermochemical pressurization of faults during coseismic slip[J]. Journal of Geophysical Research: Solid Earth, 115(B5): B05314.
BURCHFIEL B C, ROYDEN L H, VAN DER HILST R D, et al., 2008. A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China[J]. GSA Today, 18(7): 4-11.
CHEN K H, BÜRGMANN R, 2017. Creeping faults: Good news, bad news?[J]. Reviews of Geophysics, 55(2): 282-286.
CHENG Jia, LIU Jie, GAN Weijun, et al., 2011. Characteristics of strong earthquake evolution around the eastern boundary faults of the Sichuan-Yunnan rhombic block[J]. Science China Earth Sciences, 54(11): 1716-1729.
CHOU Yumin, AUBOURG C, YEH E C, et al., 2020. The magnetic fabric of gouge mimics the coseismic focal mechanism of the chi-chi earthquake (1999, Mw 7.6)[J]. Geophysical Research Letters, 47: e2020GL090111.
CHOU Yumin, SONE Shengrong, AUBOURG C, et al., 2012. An earthquake slip zone is a magnetic recorder[J]. Geology, 40(6):551-554.
COLLETTINI C, TESEI T, SCUDERI M M, et al., 2019. Beyond Byerlee friction, weak faults and implications for slip behavior[J]. Earth and Planetary Science Letters, 519:245-263.
COWAN D S, 1999. Do faults preserve a record of seismic slip? A field geologist’s opinion[J]. Journal of Structural Geology, 21(8-9): 995-1001.
DI TORO G, PENNACCHIONI G, 2005. Fault plane processes and mesoscopic structure of a strong-type seismogenic fault in tonalites (Adamello batholith, Southern Alps)[J].Tectonophysics, 402(1-4): 55-80.
DI TORO G, PENNACCHIONI G, NIELSEN S, 2009.Pseudotachylytes and earthquake source mechanics[M]//International Geophysics. Amsterdam: Elsevier: 87-133.
Earthquake Disaster Prevention Department of State Seismological Bureau, 1995.Catalogue of Chinese Historical Strong Earthquakes (23rd century B.C. to 1911 A.D.)[M]. Beijing:Seismological Press(in Chinese with English Summery).
Earthquake Disaster Prevention Department of the China Earthquake Administration, 1999.Catalogue of Chinese Earthquakes (1912-1990, MS≥4.77)[M]. Beijing: China Science and Technology Press(in Chinese with English Summery).
FERRÉ E C, CHOU Youmin, KUO R L, et al., 2016. Deciphering viscous flow of frictional melts with the mini-AMS method[J].Journal of Structural Geology, 90: 15-26.
FERRÉ E C, GEISSMAN J W, CHAUVET A, et al., 2015. Focal mechanism of prehistoric earthquakes deduced from pseudotachylyte fabric[J]. Geology, 43(6): 531-534.
FERRÉ E C, GEISSMAN J W, ZECHMEISTER M S, 2012.Magnetic properties of fault pseudotachylytes in granites[J].Journal of Geophysical Research: Solid Earth, 117: B01106.
FIALKO Y, KHAZAN Y, 2005. Fusion by earthquake fault friction:Stick or slip?[J]. Journal of Geophysical Research: Solid Earth, 110(B12): B12407.
FONDRIEST M, MECKLENBURGH J, PASSELEGUE F X, et al., 2020. Pseudotachylyte alteration and the rapid fade of earthquake scars from the geological record[J]. Geophysical Research Letters, 47(22): 749-761.
FU Bihong, SHI Pilong, GUO Huadong, et al., 2011. Surface deformation related to the 2008 Wenchuan earthquake, and mountain building of the Longmen Shan, eastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 40(4): 805-824.
GE Chenglong, LELOUP P H, ZHENG Yong, et al., 2023.Cenozoic kinematics of the Wenchuan-Maoxian fault implies crustal stacking rather than channel flow extrusion at the eastern margin of Tibetan plateau (Longmen Shan)[J].Tectonophysics, 857: 229816.
GRATIER J P, THOUVENOT F, JENATTON L, et al., 2013.Geological control of the partitioning between seismic and aseismic sliding behaviours in active faults: Evidence from the Western Alps, France[J]. Tectonophysics, 600: 226-242.
GUO Rumeng, ZHENG Yong, TIAN Wen, et al., 2018. Locking status and earthquake potential hazard along the middle-south Xianshuihe fault[J]. Remote Sensing, 10(12): 2048.
HARRIS R A, 2017. Large earthquakes and creeping faults[J].Reviews of Geophysics, 55(1): 169-198.
HE Xiangli, LI Haibing, WANG Huan, et al., 2018. Creeping along the Guanxian-Anxian fault of the 2008 Mw 7.9 Wenchuan earthquake in the Longmen Shan, China[J]. Tectonics, 37(7):2124-2141.
HE Xiangli, LI Haibing, ZHANG Lei, et al., 2018. Mineral and chemical response to low magnetic susceptibility of the fault gouge from the Guanxian-Anxian fault zone and fault creep setting in the Longmen Shan[J]. Chinese Journal of Geophysics, 61(5): 1782-1796(in Chinese with English abstract).
HIRONO T, IKEHARA M, OTSUKI K, et al., 2006. Evidence of frictional melting from disk-shaped black material, discovered within the Taiwan Chelungpu fault system[J]. Geophysical Research Letters, 33: L19311.
HOUSEN B A, VAN DER PLUIJM B A, ESSENE E J, 1995. Plastic behavior of magnetite and high strains obtained from magnetic fabrics in the Parry Sound shear zone, Ontario Grenville Province[J]. Journal of Structural Geology, 17(2): 265-278.
HUBBARD J, SHAW J H, 2009. Uplift of the Longmen Shan and Tibetan Plateau, and the 2008 Wenchuan (M=7.9)earthquake[J]. Nature, 458(7235): 194-197.
HUBBARD J, SHAW J H, KLINGER Y, 2010. Structural setting of the 2008 Mw 7.9 Wenchuan, China, earthquake[J]. Bulletin of the Seismological Society of America, 100(5B): 2713-2735.
JAYANGONDAPERUMAL R, DUBEY A K, SENTHIL KUMAR B, et al., 2010. Magnetic fabrics indicating Late Quaternary seismicity in the Himalayan foothills[J]. International Journal of Earth Sciences, 99(S1): S265-S278.
JIA Dong, LI Yiquan, LIN Aiming, et al., 2010. Structural model of 2008 Mw 7.9 Wenchuan earthquake in the rejuvenated Longmen Shan thrust belt, China[J]. Tectonophysics, 491:174-184.
JIANG Guoyan, XU Xiwei, CHEN Guihua, et al., 2015. Geodetic imaging of potential seismogenic asperities on the Xianshuihe-Anninghe-Zemuhe fault system, Southwest China, with a new 3-D viscoelastic interseismic coupling model[J].Journal of Geophysical Research: Solid Earth, 120(3):1855-1873.
KIRKPATRICK J D, ROWE C D, 2013. Disappearing ink: How pseudotachylytes are lost from the rock record[J]. Journal of Structural Geology, 52: 183-198.
KIRKPATRICK J D, DOBSON K J, MARK D F, et al., 2012. The depth of pseudotachylyte formation from detailed thermochronology and constraints on coseismic stress drop variability[J]. Journal of Geophysical Research: Solid Earth, 117: B06406.
KLEMPERER S L, 2006. Crustal flow in Tibet: Geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow[J]. Geological Society of London Special Publication, 268(1): 39-70.
KLINGER Y, 2010. Relation between continental strike-slip earthquake segmentation and thickness of the crust[J]. Journal of Geophysical Research: Solid Earth, 115: B07306.
KONTNY A, ENGELMANN R, GRIMMER J C, et al., 2012.Magnetic fabric development in a highly anisotropic magnetite-bearing ductile shear zone (Seve Nappe Complex, Scandinavian Caledonides)[J]. International Journal of Earth Sciences, 101(3): 671-692.
LEVI T, WEINBERGER R, AÏFA T, et al., 2006.Earthquake-induced clastic dikes detected by anisotropy of magnetic susceptibility[J]. Geology, 34(2): 69-72.
LI Haibing, WANG Huan, XU Zhiqin, et al., 2013. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1)[J]. Tectonophysics, 584: 23-42.
LI Haibing, WANG Huan, YANG Guang, et al., 2016. Lithological and structural characterization of the Longmen Shan fault belt from the 3rd hole of the Wenchuan Earthquake Fault Scientific Drilling project (WFSD-3)[J]. International Journal of Earth Sciences, 105(8): 2253-2272.
LI Haibing, WANG Zongxiu, FU Xiaofang, et al., 2008. The surface rupture zone distribution of the Wenchuan earthquake(Ms 8.0) happened on May 12th, 2008[J]. Geology in China, 35(5): 803-813(in Chinese with English abstract).
LI Haibing, XU Zhiqin, NIU Yixiong, et al., 2014. Structural and physical property characterization in the Wenchuan Earthquake Fault Scientific Drilling Project-Hole 1(WFSD-1)[J]. Tectonophysics, 619-620: 86-100.
LI Yiquan, JIA Dong, LUO Liang, et al., 2007. Three dimension construction and magnetic fabric analysis of the Yanjinggou fault-propagation fold in western Sichuan[J]. Earth Science Frontiers, 14(4): 74-84.
LI Yong, HUANG Runqiu, DENSMORE A L, et al., 2009. Surface rupture of Xiaoyudong fault caused by Wenchuan earthquake and its geological significance[J]. Quaternary Sciences, 29(3):502-512(in Chinese with English abstract).
LI Yong, ZHOU Rongjun, DENSMORE A L, et al., 2006.Geomorphic evidence for the Late Cenozoic strike-slipping and thrusting in Longmen Mountain at the eastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 40-51(in Chinese with English abstract).
LI Yuexin, BÜRGMANN R, 2021. Partial coupling and earthquake potential along the Xianshuihe fault, China[J]. Journal of Geophysical Research: Solid Earth, 126(7): e2020JB021406.
LIN Aiming, 2008.Fossil Earthquakes: The Formation and Preservation of Pseudotachylites[M]. Berlin: Springer.
LIU Dongliang, LI Haibing, LEE T Q, et al., 2014. Primary rock magnetism for the Wenchuan earthquake fault zone at Jiulong outcrop, Sichuan Province, China[J]. Tectonophysics, 619-620:58-69.
LU Renqi, HE Dengfa, XU Xiwei, et al., 2016. Crustal-scale tectonic wedging in the central Longmen Shan: Constraints on the uplift mechanism in the southeastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 117: 73-81.
LUO Liang, JIA Dong, CHEN Zhuxin, et al., 2006. Magnetic fabric evolution in the northwestern Sichuan basin, China and its strain characteristics[J]. Geological Bulletin of China, 25(11): 1342-1348(in Chinese with English abstract).
LUO Liang, JIA Dong, LI Yiquan, et al., 2008. Magnetic fabric of weak deformed sediments under the tectonic superposition: A case of the Northwest Sichuan Basin[J]. Acta Geologica Sinica, 82(6): 850-856(in Chinese with English abstract).
LUO Liang, QI Jiafu, JIA Dong, et al., 2013. Magnetic fabric investigation in Tianquan-Leshan section in front of Longmenshan fold-thrust belt and its indicative significance for the Cenozoic deformation[J]. Chinese Journal of Geophysics, 56(2): 558-566(in Chinese with English abstract).
LUO Liang, QI Jiafu, ZHANG Mingzheng, 2014. AMS investigation in the Pingluoba and Qiongxi anticlines, Sichuan, China: Implications for deformation mechanism of the Qiongxi structure[J]. Tectonophysics, 626: 186-196.
MADDOCK R H, GROCOTT J, VAN NES M, 1987. Vesicles, amygdales and similar structures in fault-generated pseudotachylytes[J]. Lithos, 20(5): 419-432.
MERZ L, ALMQVIST B S G, GRIMMER J C, et al., 2019.Magnetic fabric development in the Lower Seve thrust from the COSC-1 drilling, Swedish Caledonides[J]. Tectonophysics, 751: 212-228.
MISHIMA T, HIRONO T, NAKAMURA N, et al., 2009. Changes to magnetic minerals caused by frictional heating during the 1999 Taiwan Chi-Chi earthquake[J]. Earth Planets Space, 61(6): 797-801.
MITTEMPERGHER S, DALLAI L, PENNACCHIONI G, et al., 2014. Origin of hydrous fluids at seismogenic depth:Constraints from natural and experimental fault rocks[J].Earth and Planetary Science Letters, 385: 97-109.
PAN Jiawei, LI Haibing, CHEVALIAR M L, et al., 2020. A newly discovered active fault on the Selaha-Kangding segment along the SE Xianshuihe fault: the South Mugecuo fault[J]. Acta Geologica Sinica, 94(11): 3178-3188.
QIAO Xin, ZHOU Yu, ZHANG Peizhen, 2022. Along-strike variation in fault structural maturity and seismic moment deficits on the Yushu-Ganzi-Xianshuihe fault system revealed by strain accumulation and regional seismicity[J]. Earth and Planetary Science Letters, 596: 117799.
QIAO Xin, ZHOU Yu, 2021. Geodetic imaging of shallow creep along the Xianshuihe fault and its frictional properties[J].Earth and Planetary Science Letters, 567: 117001.
RICE J R, 2006. Heating and weakening of faults during earthquake slip[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05311.
ROYDEN L H, BURCHFIEL B C, KING R W, et al., 1997.Surface deformation and lower crustal flow in eastern Tibet[J].Science, 276(5313): 788-790.
ROYDEN L H, BURCHFIEL B C, VAN DER HILST R D, 2008.The geological evolution of the Tibetan Plateau[J]. Science, 321(5892): 1054-1058.
SCHOLZ C H, 1988. The brittle-plastic transition and the depth of seismic faulting[J]. Geologische Rundschau, 77(1): 319-328.
SHAN Bin, XIONG Xiong, ZHENG Yong, et al., 2009. Stress changes on major faults caused by M w7.9 Wenchuan earthquake, May 12, 2008[J]. Science in China Series D:Earth Sciences, 52(5): 593-601.
SHEN Zhengkang, SUN Jianbao, ZHANG Peizhen, et al., 2009.Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake[J]. Nature Geoscience, 2(10):718-724.
SIBSON R H, 1975. Generation of pseudotachylyte by ancient seismic faulting[J]. Geophysical Journal International, 43(3):775-794.
SIBSON R H, 1977. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 133(3): 191-213.
SIBSON R H, TOY V G, 2006. The habitat of fault-generated pseudotachylyte: Presence vs. absence of friction-melt[M]//Geophysical Monograph Series. Washington D. C.: American Geophysical Union: 153-166.
SIBSON R H, 1983. Continental fault structure and the shallow earthquake source[J]. Journal of the Geological Society, 140(5): 741-767.
TAPPONNIER P, XU Zhiqin, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677.
TESEI T, LACROIX B, COLLETTINI C, 2015. Fault strength in thin-skinned tectonic wedges across the smectite-illite transition: Constraints from friction experiments and critical tapers[J]. Geology, 43(10): 923-926.
TIAN Yuntao, KOHN B P, GLEADOW A J W, et al., 2013.Constructing the Longmen Shan eastern Tibetan Plateau margin: Insights from low-temperature thermochronology[J].Tectonics, 32(3): 576-592.
TODA S, LIN Jian, MEGHRAOUI M, et al., 2008. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems[J]. Geophysical Research Letters, 35(17): L17305.
USGS. Earthquakes[EB/OL]. [2020-07-20]. https://www.usgs.gov/programs/earthquake-hazards/earthquakes.
VOLPE G, POZZI G, COLLETTINI C, 2022. Y-B-P-R or S-C-C’?Suggestion for the nomenclature of experimental brittle fault fabric in phyllosilicate-granular mixtures[J]. Journal of Structural Geology, 165: 104743.
WANG Erqi, MENG Qingren, 2008. Discussion on the Mesozoic and Cenozoic tectonic evolution of the Longmen Shan fault belt[J].Science in China (Series D), 38(10): 1221-1233(in Chinese).
WANG Huan, LI Haibing, DI TORO G, et al., 2023. Melting of fault gouge at shallow depth during the 2008 Mw 7.9 Wenchuan earthquake, China[J]. Geology, 51(4): 345-350.
WANG Huan, LI Haibing, JANSSEN C, et al., 2015. Multiple generations of pseudotachylyte in the Wenchuan fault zone and their implications for coseismic weakening[J]. Journal of Structural Geology, 74: 159-171.
WANG Huan, LI Haibing, SI Jialiang, et al., 2014. Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation[J].Tectonophysics, 619-620: 101-114.
WANG Huan, LI Haibing, SI Jialiang, et al., 2019b. Geochemical features of the pseudotachylytes in the Longmen Shan thrust belt, eastern Tibet[J]. Quaternary International, 514: 173-185.
WANG Huan, LI Haibing, SI Jialiang, et al., 2023. Characteristics, genesis and tectonic significance of the pseudotachylyte produced by the Wenchuan earthquake[J]. Acta Petrologica Sinica, 39(12): 3833-3847(in Chinese with English abstract).
WANG Huan, LI Haibing, ZHANG Lei, et al., 2019a. Paleoseismic slip records and uplift of the Longmen Shan, eastern Tibetan Plateau[J]. Tectonics, 38(1): 354-373.
WANG Min, SHEN Zhengkang, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research:Solid Earth, 125(2): e2019JB018774.
WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002.
WEN Xueze, 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone, western Sichuan[J].Seismology and Geology, 22(3): 239-249(in Chinese with English abstract).
WEN Xueze, ALLEN C R, LUO Zhuoli, et al., 1989. Segmentation, geometric features, and their seismotectonic implications for the Holocene Xianshuihe fault zone[J]. Acta Seismologica Sinica, 11(4): 362-372(in Chinese with English abstract).
WEN Xueze, MA Shengli, XU Xiwei, et al., 2008. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China[J].Physics of the Earth and Planetary Interiors, 168: 16-36.
WU Qiong, LI Haibing, CHEVALIER M L, et al., 2023. Fluid influx promotes local strengthening of the creeping Xianshuihe fault, eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 128(7): e2023JB026682.
WU Qiong, LI Haibing, CHEVALIER M L, et al., 2021. Rock characteristics, internal structure and physical-chemical properties of Qianning segment in Xianshuihe fault zone[J].Acta Petrologica Sinica, 37(10): 3204-3224(in Chinese with English abstract).
WU Qiong, LI Haibing, CHEVALIER M L, et al., 2023.Petrological records of creeping and locally stick-slip deformation along Qianning segment of Xianshuihe fault[J].Acta Petrologica Sinica, 39(12): 3797-3816(in Chinese with English abstract).
XU Jing, SHAO Zhigang, MA Hongsheng, et al., 2013. Evolution of Coulomb stress and stress interaction among strong earthquakes along the Xianshuihe fault zone[J]. Chinese Journal of Geophysics, 56(4): 1146-1158(in Chinese with English abstract).
XU Xiwei, WEN Xueze, YE Jianqing, et al., 2008. The Ms8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 30(3): 597-629(in Chinese with English abstract).
XU Zhiqin, LI Haibing, WU Zhongliang, 2008. Wenchuan earthquake and scientific drilling[J]. Acta Geologica Sinica, 82(12): 1613-1622(in Chinese with English abstract).
YANG Shaohua, PAN Jiawei, LI Haibing, et al., 2024. Present-day upper-crustal strain rate field in southeastern Tibet and its geodynamic implications: Constraints from GPS measurements with ABIC method[J]. Acta Geologica Sinica(English Edition), 98(1): 265-275.
YANG Tao, MISHIMA T, UJIIE K, et al., 2013. Strain decoupling across the décollement in the region of large slip during the 2011 Tohoku-Oki earthquake from anisotropy of magnetic susceptibility[J]. Earth and Planetary Science Letters, 381: 31-38.
YANG Tao, CHOU Yumin, FERRÉ E C, et al., 2020. Faulting processes unveiled by magnetic properties of fault rocks[J].Reviews of Geophysics, 58(4): e2019RG000690.
YANG Wen, CHENG Jia, LIU Jie, et al., 2015. The Kangding earthquake swarm of November, 2014[J]. Earthquake Science, 28(3): 197-207.
YIN An, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280.
ZHANG Lei, LI Haibing, FERRÉ E C, et al., 2024. Focal mechanism of a Late Triassic large magnitude earthquake along the Longmen Shan fault belt, eastern Tibetan Plateau[J].Journal of Structural Geology, 178: 105015.
ZHANG Lei, LI Haibing, SUN Zhiming, et al., 2018. Metallic iron formed by melting: A new mechanism for magnetic highs in pseudotachylyte[J]. Geology, 46(9): 779-782.
ZHANG Lei, LI Haibing, SUN Zhiming, et al., 2018. Rock magnetic evidence for the seismogenic setting of large earthquakes in the Longmen Shan fault zone[J]. Chinese Journal of Geophysics, 61(5): 1715-1727(in Chinese with English abstract).
ZHANG Lei, LI Haibing, SUN Zhiming, et al., 2019. Metallic iron formed by melting and its seismogenic setting indication[J].Acta Petrologica Sinica, 35(6): 1875-1891(in Chinese with English abstract).
ZHANG Lei, LI Haibing, SUN Zhiming, et al., 2021.Microstructural evolution of pseudotachylyte-bearing rocks during increasing temperatures: Evidence from rock-heating experiments[J]. Journal of Structural Geology, 149: 104398.
ZHANG Lei, LI Haibing, SUN Zhiming, et al., 2023. Rock magnetic characteristics of the Wenchuan-Maoxian fault zone of the Longmen Shan fault and its earthquake faulting characteristics[J]. Acta Petrologica Sinica, 39(12):3817-3832(in Chinese with English abstract).
ZHANG Lei, SUN Zhiming, LI Haibing, et al., 2017. Rock record and magnetic response to large earthquakes within Wenchuan Earthquake Fault Scientific Drilling cores[J]. Geochemistry, Geophysics, Geosystems, 18(5): 1889-1906.
ZHANG Peizhen, 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 584: 7-22.
ZHANG Peizhen, XU Xiwei, WEN Xueze, et al., 2008. Slip rates and recurrence intervals of the Longmen Shan active fault zone and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 51(4): 1066-1073(in Chinese with English abstract).
ZHENG Yong, LI Haibing, SUN Zhiming, et al., 2016. New geochronology constraints on timing and depth of the ancient earthquakes along the Longmen Shan fault belt, eastern Tibet[J]. Tectonics, 35(12): 2781-2806.
ZHOU Zhicheng, YAN Danping, QIU Liang, et al., 2023.Multi-phase non-coaxial orogenic growth: Propagation of the Longmen Shan thrust belt on the eastern margin of the Tibetan Plateau[J]. Tectonics, 42(9): e2023TC007814.
ZIELKE O, KLINGER Y, ARROWSMITH J R, 2015. Fault slip and earthquake recurrence along strike-slip faults-Contributions of high-resolution geomorphic data[J].Tectonophysics, 638: 43-62.
-
计量
- 文章访问数: 62
- PDF下载数: 10
- 施引文献: 0