SPA-based K-means Clustering Algorithm for Remote Sensing Image
-
摘要: 基于欧式距离的K-均值聚类算法是一种硬分类(把每个待辨识的对象严格地划分到某个类中)方法,面对具有不确定性和混合像元特征的遥感图像数据,传统K-均值聚类算法很难得到满意的分类结果.为解决这一难题,将集对分析(set pair analysis,SPA)理论推广到遥感图像聚类算法,通过引入一个能统一描述同一性、差异性和对立性的同异反(identical discrepancy contrary,IDC)联系度,提出了基于IDC联系度的改进的K-均值聚类算法.该方法克服了传统K-均值算法硬分类的缺陷,可以有效地提高遥感图像聚类精度.对Landsat5 TM卫星数据的聚类分析实验表明,在含有混合像元的遥感图像地物覆盖分类中,改进的K-均值聚类方法的分类效果要优于传统K-均值聚类方法.
-
-
计量
- 文章访问数: 514
- PDF下载数: 0
- 施引文献: 0