摘要:
为了探索岩溶峰丛区生态参数与石灰岩基岩表面溶蚀率的相关性,用相关生态参数反演土层下石灰岩基岩表面的溶蚀率,从而间接估算其变形。选择桂林丫吉村岩溶峰丛区为研究区,以Landsat5 TM多光谱数据为信息源,提取归一化差值植被指数( normalized difference vegetation index,NDVI)、地面温度及土壤湿度等遥感参数;运用SPSS统计软件对这3种参数分别与石灰岩溶蚀率进行了相关分析,确定其相关系数分别为-0.91,0.85及0.93;在此基础上,通过逐步回归分析,建立了运用NDVI估算植被覆盖下石灰岩表面溶蚀率的遥感反演模型。结果表明:NDVI与石灰岩溶蚀率相关性最大,所以植被信息是石灰岩表层基岩溶蚀的主要间接标志;溶蚀率与NDVI指数存在线性关系,因此只要已知研究区其他地区的NDVI指数,即可估算出该地区的石灰岩基岩表面溶蚀率。
Abstract:
To explore the correlation between the ecological parameters of Karst peaks and the dissolution rate of surface limestone bedrock, the authors selected the relevant ecological parameters to indirectly estimate the dissolution rate of limestone bedrock under the soil surface and, based on TM multi-band data of Landsat5, chose Karst area of Yaji Village in Guilin as the study area for the purpose of extracting its sensing parameters comprising NDVI, ground temperature and soil moisture. Using SPSS statistical software, the authors made a correlation analysis of these three factors with the limestone dissolution rate and obtained their correlation coefficients, which are -0. 91, 0. 85 and 0. 93 respectively. A computing remote inversion model of limestone surface dissolution amount dissolution rate, which is covered by vegetation, was established by using NDVI to perform estimatation through regression analysis. The results show that NDVI and limestone dissolution rate have the maximum correlation. Therefore, the vegetation information is an indirect sign of dissolution of limestone bedrock surface. There is a linear relationship between the dissolution rate and the NDVI index. So long as the NDVI index is known in other parts of the study area, the limestone dissolution rate in this area can be estimated.