An improved multispectral image segmentation method based on super-pixels
-
摘要: 在面向对象多光谱图像分割方法中,初始对象特征往往无法反映真实区域的整体特征,从而产生错误的合并结果.针对以上问题,提出采用简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素与结构张量粗分割相结合的方法对其进行改进.先采用SLIC超像素方法产生初始过分割结果,用结构张量产生尺度空间下的粗分割结果,再用粗分割结果指导超像素进行初步合并,使分形网络演化方法(fractal net evolution approach,FNEA)所面向的初始对象能够表达该区域的整体特征,增强后续合并过程对噪声的抗性.将该方法与传统FNEA的分割结果对比表明,该方法具有良好的抗噪能力,对复杂城区高空间分辨率多光谱图像能够得到较好的分割结果.
-
-
计量
- 文章访问数: 752
- PDF下载数: 39
- 施引文献: 0