中国自然资源航空物探遥感中心主办
地质出版社出版

新冠疫情影响下武汉市气溶胶类型变化分析

韦耿, 侯钰俏, 查勇. 2021. 新冠疫情影响下武汉市气溶胶类型变化分析. 自然资源遥感, 33(3): 238-245. doi: 10.6046/zrzyyg.2020266
引用本文: 韦耿, 侯钰俏, 查勇. 2021. 新冠疫情影响下武汉市气溶胶类型变化分析. 自然资源遥感, 33(3): 238-245. doi: 10.6046/zrzyyg.2020266
WEI Geng, HOU Yuqiao, ZHA Yong. 2021. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic. Remote Sensing for Natural Resources, 33(3): 238-245. doi: 10.6046/zrzyyg.2020266
Citation: WEI Geng, HOU Yuqiao, ZHA Yong. 2021. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic. Remote Sensing for Natural Resources, 33(3): 238-245. doi: 10.6046/zrzyyg.2020266

新冠疫情影响下武汉市气溶胶类型变化分析

  • 基金项目:

    国家自然科学基金项目“长三角地区气溶胶污染特征与形成机制研究”(41671428)

详细信息
    作者简介: 韦 耿(1996-),男,硕士研究生,主要研究方向为大气颗粒物质量浓度估算。Email:347128908@qq.com。
  • 中图分类号: P407X87

Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic

  • 应用湖北省武汉市2019年12月1日—2020年4月30日期间的大气颗粒物数据(PM10与PM2.5),以及MODIS气溶胶产品,获取该区域的气溶胶光学厚度 (aerosol optical depth,AOD)、精细模式分数(fine-mode fraction,FMF)数据,建立4种气溶胶类型(城市/工业型、沙尘型、干洁海洋型和混合型)模型,对比分析新冠肺炎疫情影响下,社会管控及产业停产对武汉市大气颗粒物及气溶胶类型特性的影响。结果表明,管控及停产期间由于人为排放量减少,大气颗粒物浓度值均呈现下降趋势,除春节假期以外,城市/工业型气溶胶占比同样呈下降趋势,干洁海洋型气溶胶占比则上升至13.4%,而有序复工复产后,变化趋势则与管控停产期间相反。与2017—2019年同时期相比,春节后持续管控及停产期间,大气颗粒物浓度值和气溶胶参数同样低于往年同期。MODIS气溶胶产品能够有效获取区域气溶胶特性,对区域大气环境的监测及治理提供数据帮助。
  • 加载中
  • [1]

    毛节泰, 张军华, 王美华. 中国大气气溶胶研究综述[J]. 气象学报, 2002, 60(5):625-634.

    [2]

    Mao J T, Zhang J H, Wang M H. Summary comment on research of atmospheric aerosl in China[J]. Acta Meteorologica Sinica, 2002, 60(5):625-634.

    [3]

    张小曳. 中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J]. 气象学报, 2014, 72(6):1108-1117.

    [4]

    Zhang X Y. Characteristics of the chemical components of aerosol particles in the various regions over China[J]. Acta Meteorologica Sinica, 2014, 72(6):1108-1117.

    [5]

    徐祥德. 城市化环境大气污染模型动力学问题[J]. 应用气象学报, 2002(13):1-12.

    [6]

    Xu X D. Dynamic issues of urban atmospheric pollution models[J]. Quarterly Journal of Applied Meteorlolgy, 2002(13):1-12.

    [7]

    徐祥德, 施晓晖, 张胜军, 等. 北京及周边城市群落气溶胶影响域及其相关气候效应[J]. 科学通报, 2005, 50(22):2522-2530.

    [8]

    Xu X D, Shi X H, Zhang S J, et al. The aerosol influence regions and related climate effects of Beijing and surrounding cities[J]. Chinese Science Bulletin, 2005, 50(22):2522-2530.

    [9]

    Raghu B, Sailesh N B, Rajasekhar B B. Southeast Asian smoke haze:Fractionation of particulate-bound elements and associated health risk[J]. Environmental Science & Technology, 2014, 48(8):4327-4335.

    [10]

    Peng R D, Bell M L, Geyh A S. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution[J]. Environmental Health Perspectives, 2009, 117(6):957-963.

    [11]

    Kloog I, Ridgway B, Koutrakis P, et al. Long and short term exposure to PM2.5 and mortality[J]. Epidemiology, 2013(24):555-561.

    [12]

    Che H, Xia X, Zhu J, et al. Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements[J]. Atmospheric Chemistry and Physics, 2014, 14(4):2125-2138.

    [13]

    Qi B, Hu D Y, Che H Z, et al. Seasonal variation of aerosol optical properties in an urban site of the Yangtze Delta Region of China[J]. Aerosol and Air Quality Research, 2016, 16(11):2884-2896.

    [14]

    郑彬, 吴兑, 李菲, 等. 南海夏季风背景下的广州气溶胶光学特性变化特征[J]. 热带气象学报, 2013, 29(2):207-214.

    [15]

    Zheng B, Wu D, Li F, et al. Variation of aerosol optical characteristics in Guangzhou on a backgroud of South China Sea summer monsoon[J]. Journal of Tropical Meteorology, 2013, 29(2):207-214.

    [16]

    King M D, Kaufman Y J, Menzel W P, et al. Remote sensing of cloud,aerosol,and water vapor properties from the moderate resolution imaging spectrometer(MODIS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30:2-27.

    [17]

    Kang N, Kumar K R, Hu K, et al. Long-term (2002—2014) evolution and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta[J]. Atmospheric Research, 2016, 181:29-43.

    [18]

    郑有飞, 董自鹏, 吴荣军, 等. MODIS气溶胶光学厚度在长江三角洲地区适用性分析[J]. 地球科学进展, 2011, 26(2):224-234.

    [19]

    Zheng Y F, Dong Z P, Wu R J, et al. Validation of MODIS aerosol optical thickness retrieval over Yangtze delta region of China[J]. Advances in Earth Science, 2011, 26(2):224-234.

    [20]

    朱爱华, 李成才. 北京地区MODIS卫星遥感气溶胶资料的检验与应用[J]. 环境科学学报, 2004, 24(1):86-90.

    [21]

    Zhu A H, Li C C. Validation and application of MODIS remote aerosol information in Beijing[J]. Acta Scientiae Circumstantiae, 2004, 24(1):86-90.

    [22]

    Lee K H, Kim Y J, Wolfgand V, et al. Sptio-teproral variability of satellite derived aerosol optical thickness over Northeast Asia in 2004[J]. Atmospheric Environment, 2007, 41:3959-3973.

    [23]

    Lee K H, Kim Y J, Kim M J. Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004[J]. Atmospheric Environment, 2006, 40:5146-5155.

    [24]

    贺军亮, 张淑媛, 李佳, 等. 基于MODIS的城市大气颗粒物污染指数研究[J]. 国土资源遥感, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.

    [25]

    He J L, Zhang S Y, Li J, et al. Particulate matter indices derived from MODIS data for indicating urban air pollution[J]. Remote Sensing for Land and Resources, 2016, 28(2):126-131.doi: 10.6046/gtzyyg.2016.02.20.

    [26]

    张瑞芳, 于兴娜. 河南省气溶胶光学特性的时空变化特征[J]. 环境科学, 2020, 41(2):600-608.

    [27]

    Zhang R F, Yu X N. Spatio-temporal distribution and variation characteristics of aerosol optical properties in Henan Province[J]. Environmental Science, 2020, 41(2):600-608.

    [28]

    施益强, 邓秋琴, 吴君, 等. 厦门市MODIS气溶胶光学厚度与空气质量指数的回归分析[J]. 国土资源遥感, 2020, 31(1):106-113.doi: 10.6046/gtzyyg.2020.01.15.

    [29]

    Shi Y Q, Deng Q Q, Wu J, et al. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land and Resources, 2020, 31(1):106-113.doi: 10.6046/gtzyyg.2020.01.15.

    [30]

    邬明权, 牛铮, 乔玉良, 等. 基于MODIS数据的北京气溶胶类型特性与影响因素分析[J]. 地球信息科学学报, 2009, 11(4):541-547.

    [31]

    Wu M Q, Niu Z, Qiao Y L, et al. Aerosol types and its affecting factors over Beijing based on MODIS data[J]. Journal of Geo-Information Science, 2009, 11(4):541-547.

    [32]

    安晓丹, 张佳华, 刘学锋, 等. 华北平原夏收期间气溶胶卫星遥感探测分析[J]. 环境科学学报, 2016, 36(9):3386-3392.

    [33]

    An X D, Zhang J H, Liu X F, et al. Aerosol detection analysis from satellite during the harvest season over North China Plain[J]. Acta Scientiae Circumstantiae, 2016, 36(9):3386-3392.

    [34]

    Anderson T L, Wu Y, Chu D A, et al. Testing the MODIS satellite retrieval of aerosol fine-mode fraction[J]. Journal of Geophysical Research Atmospheres, 2005, 110(D18):D18204.

    [35]

    Li L Y, Chen Y, Xie S D. Spatio-temporal variation of biogenic volatile organic compounds emissions in China[J]. Environmental Pollution, 2013, 182(6):157-168.

    [36]

    Barnaba F, Gobbi G P. Aerosol seasonal variability over the Mediterranean region and relative impact of maritime,continental and Saharan dust particles over the basin from MODIS data in the year 2001[J]. Atmospheric Chemistry and Physics, 2004, 4:2367-2391.

    [37]

    郑祚芳, 陈家华, 祁文. 湖北省近50年气候变化特征分析[J]. 气象科学, 2002, 22(3):279-286.

    [38]

    Zheng Z F, Chen J H, Qi W. The character of climate variation of Hubei Province during recent 50 years[J]. Scientia Meteorologica Sinica, 2002, 22(3):279-286.

    [39]

    许刚, 焦利民, 赵素丽, 等. 1990—2014年武汉市空气质量时空变化[J]. 环境工程, 2016, 34(4):80-85.

    [40]

    Xu G, Jiao L M, Zhao S L, et al. Spatial and temporal variability of air quality in Wuhan City from 1990 to 2014[J]. Environmental Engineering, 2016, 34(4):80-85.

    [41]

    操文祥, 沈帆, 全继宏, 等. 武汉地区沙尘天气气溶胶粒径分布特性研究[J]. 中国环境监测, 2015, 31(6):47-52.

    [42]

    Cao W X, Shen F, Quan J H, et al. Aerosol particle size distribution research during sand storm in Wuhan area[J]. Environmental Monitoring in China, 2015, 31(6):47-52.

  • 加载中
计量
  • 文章访问数:  423
  • PDF下载数:  73
  • 施引文献:  0
出版历程
收稿日期:  2020-08-28
刊出日期:  2021-09-15

目录