中国自然资源航空物探遥感中心主办
地质出版社出版

基于分区-集成的黄河流域生态脆弱性评价

杨雯娜, 周亮, 孙东琪. 2021. 基于分区-集成的黄河流域生态脆弱性评价. 自然资源遥感, 33(3): 211-218. doi: 10.6046/zrzyyg.2020286
引用本文: 杨雯娜, 周亮, 孙东琪. 2021. 基于分区-集成的黄河流域生态脆弱性评价. 自然资源遥感, 33(3): 211-218. doi: 10.6046/zrzyyg.2020286
YANG Wenna, ZHOU Liang, SUN Dongqi, . 2021. Ecological vulnerability assessment of the Yellow River basin based on partition-integration concept. Remote Sensing for Natural Resources, 33(3): 211-218. doi: 10.6046/zrzyyg.2020286
Citation: YANG Wenna, ZHOU Liang, SUN Dongqi, . 2021. Ecological vulnerability assessment of the Yellow River basin based on partition-integration concept. Remote Sensing for Natural Resources, 33(3): 211-218. doi: 10.6046/zrzyyg.2020286

基于分区-集成的黄河流域生态脆弱性评价

  • 基金项目:

    国家自然科学基金项目“干旱区城镇扩张对绿洲耕地多尺度影响与情景模拟”(41961027)

    甘肃省重点人才项目“西部贫困山区交通减贫与乡村振兴创新人才培养项目”(2021RCXM073)

    兰州交通大学“百名青年优秀人才培养计划”

详细信息
    作者简介: 杨雯娜(1997-),女,硕士,主要研究方向为流域生态遥感。Email:yangwennaleo10@163.com。
  • 中图分类号: TP79

Ecological vulnerability assessment of the Yellow River basin based on partition-integration concept

  • 黄河流域是中国重要的生态安全屏障、资源能源集聚地区、生产活动高度密集地区,其生态环境变化直接关系到流域生态与经济可持续发展。研究基于“分区-集成”的评价方法,选取水资源、气候、土壤、植被及人类活动等指标建立评价体系,引入乘法模型,对黄河流域的生态脆弱性进行了量化评价与空间异质性分析。结果表明: 流域整体生态环境呈中度脆弱,中度脆弱地区占流域面积的42.46%,脆弱性较为严重的地区主要为流域上游沿黄城市经济带; 2000—2018年流域生态脆弱水平先降低后升高,其中2000年生态问题最为突出,2015年脆弱程度最低,其综合脆弱指数分别为2.28和2.00; 流域范围内生态脆弱性分布与趋势演变空间差异明显,流域上游高原地区生态脆弱程度明显升高,沿黄城市带脆弱性等级无明显变化,中下游地区生态环境改善趋势显著。
  • 加载中
  • [1]

    罗跃初, 周忠轩, 孙轶, 等. 流域生态系统健康评价方法[J]. 生态学报, 2003, 23(8):1606-1614.

    [2]

    Luo Y C, Zhou Z X, Sun Y, et al. Assessment methods of watershed ecosystem health[J]. Acta Ecologica Sinica, 2003, 23(8):1606-1614.

    [3]

    Zhang F, Liu X P, Zhang J Q, et al. Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin,China[J]. Ecological Modelling, 2017, 349(7):41-50.

    [4]

    Zhou L, Xu J G, Sun D Q. Zoning assessment of water environmental supporting capacity of socioeconomic development in the Huaihe River Basin,China[J]. Journal of Geographical Sciences, 2015, 25(10):1199-1217.

    [5]

    Beroya-Eitner M A. Ecological vulnerability indicators[J]. Ecological Indicators, 2016, 60(1):329-334.

    [6]

    Ahn S R, Kim S J. Assessment of integrated watershed health based on the natural environment,hydrology,water quality,and aquatic ecology[J]. Hydrology and Earth System Science, 2017, 21(11):5583-5602.

    [7]

    周祖昊. 流域二元信息的采集与加工[M]//王浩.黄河流域水资源及其演变规律研究. 北京: 科学出版社, 2010:61-66.

    [8]

    Zhou Z H. Collection and processing of binary information of Yellow River Basin[M]//Wang H.Research on water resources and its evolution law of the Yellow River Basin. Beijing: Science Press, 2010:61-66.

    [9]

    陈耀, 张可云, 陈晓东, 等. 黄河流域生态保护和高质量发展[J]. 区域经济评论, 2020(1):8-22.

    [10]

    Chen Y, Zhang K Y, Chen X D, et al. Ecological protection and high-quality development of the Yellow River Basin[J]. Regional Economic Review, 2020(1):8-22.

    [11]

    秦大庸, 于福亮, 裴源生. 宁夏引黄灌区耗水量及水均衡模拟[J]. 资源科学, 2003(6):19-24.

    [12]

    Qin D Y, Yu F L, Pei Y S. Water demand and water balancing simulation for Yellow River irrigated areas[J]. Resources Science, 2003(6):19-24.

    [13]

    周日平. 黄土高原典型区土壤保持服务效应研究[J]. 国土资源遥感, 2019, 31(2):131-139.doi: 10.6046/gtzyyg.2019.02.19.

    [14]

    Zhou R P. Assessing the soil erosion control service in the typical area of Loess Plateau[J]. Remote Sensing for Land and Resources, 2019, 31(2):131-139.doi: 10.6046/gtzyyg.2019.02.19.

    [15]

    吴春生, 黄翀, 刘高焕, 等. 基于模糊层次分析法的黄河三角洲生态脆弱性评价[J]. 生态学报, 2018, 38(13):4584-4595.

    [16]

    Wu C S, Huang C, Liu G H, et al. Assessment of ecological vulnerability in the Yellow River Delta using the Fuzzy Analytic Hierarchy Process[J]. Acta Ecologica Sinica, 2018, 8(13):4584-4595.

    [17]

    孙波, 孙永军, 田垄. 黄淮海流域湿地遥感调查[J]. 国土资源遥感, 2010(s1):144-147.doi: 10.6046/gtzyyg.2010.s1.30.

    [18]

    Sun B, Sun Y J, Tian L. A remote sensing investigation of waterlands in Yellow River Basin[J]. Remote Sensing for Land and Resources, 2010(s1):144-147.doi: 10.6046/gtzyyg.2010.s1.30.

    [19]

    陈继伟, 曾琪明, 焦健, 等. Sentinel-1A卫星TOPS模式数据的SBAS时序分析方法——以黄河三角洲地区为例[J]. 国土资源遥感, 2017, 29(4):82-87.doi: 10.6046/gtzyyg.2017.04.13.

    [20]

    Chen J W, Zeng Q M, Jiao J, et al. SBAS time series analysis technique based on Sentinel-1A TOPS SAR images:A case study of Yellow River Delta[J]. Remote Sensing for Land and Resources, 2017, 29(4):82-87.doi: 10.6046/gtzyyg.2017.04.13

    [21]

    陆大道, 孙东琪. 黄河流域的综合治理与可持续发展[J]. 地理学报, 2019, 74(12):2431-2436.

    [22]

    Lu D D, Sun D Q. Development and management tasks of the Yellow River Basin:A preliminary understanding and suggestion[J]. Acta Geographica Sinica, 2019, 74(12):2431-2436.

    [23]

    李晓琴, 田垄, 余珍风. 黄河流域水土流失遥感监测[J]. 国土资源遥感, 2009(4):57-61,67.doi: 10.6046/gtzyyg.2009.04.12.

    [24]

    Li X Q, Tian L, Yu Z F. Remote sensing monitoring of soil erosion in the Yellow River Basin[J]. Remote Sensing for Land and Resources, 2009(4):57-61,67.doi: 10.6046/gtzyyg.2009.04.12.

    [25]

    Wang G Q, Zhang J Y, Jin J L, et al. Impacts of climate change on water resources in the Yellow River basin and identification of global adaptation strategies[J]. Mitigation and Adaptation Strategies for Global Change, 2017(22):67-83.

    [26]

    李敏, 张长印, 王海燕. 黄土高原水土保持治理阶段研究[J]. 中国水土保持, 2019(2):1-4.

    [27]

    Li M, Zhang C Y, Wang H Y. Research on the stages of soil and water conservation management in the Loess Plateau[J]. Soil and Water Conservation in China, 2019(2):1-4.

    [28]

    陈军, 杜培军, 谭琨. 一种改进的全极化SAR图像MCSM-Wishart非监督分类方法[J]. 国土资源遥感, 2015, 27(2):15-21.

    [29]

    Chen J, Du P J, Tan K. An improved unsupervised classification scheme for polarimetric SAR image with MCSM-Wishart[J]. Remote Sensing for Land and Resources, 2015, 27(2):15-21.

    [30]

    Guo B, Fan Y W, Yang F, et al. Quantitative assessment model of ecological vulnerability of the Silk Road Economic Belt,China,utilizing remote sensing based on the partition-integration concept[J]. Geomatics,Natural Hazards and Risk, 2019(10):1346-1366.

    [31]

    彭少明, 郑小康, 王煜, 等. 黄河典型河段水量水质一体化调配模型[J]. 水科学进展, 2016, 27(2):196-205.

    [32]

    Peng S M, Zheng X K, Wang Y, et al. Study on integrated allocation and dispatch model of water quality and quantity for the Yellow River[J]. Advances in Water Science, 2016, 27(2):196-205.

    [33]

    郝志新, 郑景云, 葛全胜, 等. 黄河中下游与江淮流域的降水量和入渗深度关系分析[J]. 自然科学进展, 2008(6):662-667.

    [34]

    Hao Z X, Zheng J Y, Ge Q S, et al. Analysis of the relationship between precipitation and infiltration depth in the middle and lower reaches of the Yellow River and the Jianghuai Basin[J]. Progress in Natural Science, 2008(6):662-667.

    [35]

    Guo B, Zhou Y, Zhu J F, et al. Spatial patterns of ecosystem vulnerability changes during 2001—2011 in the three-river source region of the Qinghai-Tibetan Plateau,China[J]. Journal of Arid Land, 2015, 8(1):23-35.

    [36]

    王帅, 傅伯杰, 武旭同, 等. 黄土高原社会-生态系统变化及其可持续性[J]. 资源科学, 2020, 42(1):96-103.

    [37]

    Wang S, Fu B J, Wu X T, et al. Dynamics and sustainability of social-ecological systems in the Loess Plateau[J]. Resources Science, 2020, 42(1):96-103.

    [38]

    王琼, 卢聪, 范志平, 等. 基于主成分分析和熵权法的河流生境质量评价方法——以清河为例[J]. 生态科学, 2017, 36(4):185-193.

    [39]

    Wang Q, Lu C, Fan Z P, et al. River habitat quality assessment based on principal component analysis and entropy weight in Qinghe River as a case[J]. Ecological Science, 2017, 36(4):185-193.

    [40]

    邵秋芳, 彭培好, 黄洁, 等. 长江上游安宁河流域生态环境脆弱性遥感监测[J]. 国土资源遥感, 2016, 28(2):175-181.doi: 10.6046/gtzyyg.2016.02.27.

    [41]

    Shao Q F, Peng P H, Huang J, et al. Monitoring ecoenvironmental vulnerability in Anning River Basin in the upper reaches of the Yangtze River using remote sensing techniques[J]. Remote Sensing for Land and Resources, 2016, 28(2):175-181.doi: 10.6046/gtzyyg.2016.02.27.

    [42]

    Zhou H, Deng Z, Xia Y, et al. A new sampling method in particle filter based on Pearson correlation coefficient[J]. Neurocomputing, 2016:208-215.

  • 加载中
计量
  • 文章访问数:  1069
  • PDF下载数:  105
  • 施引文献:  0
出版历程
收稿日期:  2020-09-10
刊出日期:  2021-09-15

目录