中国自然资源航空物探遥感中心主办
地质出版社出版

基于MODIS_TVDI/GNSS_PWV的云南省干旱特征时空分析

于维, 柯福阳, 曹云昌. 2021. 基于MODIS_TVDI/GNSS_PWV的云南省干旱特征时空分析. 自然资源遥感, 33(3): 202-210. doi: 10.6046/zrzyyg.2020329
引用本文: 于维, 柯福阳, 曹云昌. 2021. 基于MODIS_TVDI/GNSS_PWV的云南省干旱特征时空分析. 自然资源遥感, 33(3): 202-210. doi: 10.6046/zrzyyg.2020329
YU Wei, KE Fuyang, CAO Yunchang. 2021. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data. Remote Sensing for Natural Resources, 33(3): 202-210. doi: 10.6046/zrzyyg.2020329
Citation: YU Wei, KE Fuyang, CAO Yunchang. 2021. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data. Remote Sensing for Natural Resources, 33(3): 202-210. doi: 10.6046/zrzyyg.2020329

基于MODIS_TVDI/GNSS_PWV的云南省干旱特征时空分析

  • 基金项目:

    “国家自然科学基金”(41674036)

    “江苏省‘

    六大人才高峰’高层次人才项目”(XYDDX-045)

    “西宁市科技计划项目”(2019-Y-12)

详细信息
    作者简介: 于 维(1997-),男,硕士研究生,主要从事遥感反演及GNSS水汽研究。Email:2232446236@qq.com。
  • 中图分类号: TP79

Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data

  • 为了缓解现有干旱监测技术存在的监测易受环境影响、时效性不强等问题。本研究使用MODIS_TVDI和GNSS_PWV数据,利用相关性分析、回归分析等方法研究云南省2016—2020年春季干旱特征时空变化。研究结果表明: TVDI反演结果能较好地反映区域干旱时空特征变化,在空间上,旱情呈滇西北向滇东南增强的趋势; 在时间上,季内旱情呈先递增后减缓趋势,尤其3—4月份旱情变化特征最为明显。此外,基于Pearson相关分析方法发现PWV和TVDI存在较强的相关性,在季尺度上,相关系数基本均大于0.5; 在月尺度上,PWV变化趋势与TVDI变化趋势基本一致,但TVDI变化有一定的时间延迟; 在日尺度上,尤其是降雨时期,PWV变化和TVDI变化幅度契合度更高,表现出了一定的干旱特征信号,因此PWV为旱灾监测提供了一种新的技术手段。
  • 加载中
  • [1]

    余航, 王龙, 文俊, 等. 云南省500年干旱灾害时空分布研究[J]. 干旱区资源与环境, 2014, 28(12):38-44.

    [2]

    Yu H, Wang L, Wen J, et al. Study on spatial and temporal distribution of drought disaster in 500 years in Yunnan Province[J]. Journal of Arid Land Resources and Environment, 2014, 28(12):38-44.

    [3]

    李新尧, 杨联安, 聂红梅, 等. 基于植被状态指数的陕西省农业干旱时空动态[J]. 生态学杂志, 2018, 37(4):1172-1180.

    [4]

    Li X Y, Yang L A, Nie H M, et al. Assessment of temporal and spatial dynamics of agricultural drought in Shaanxi Province based on vegetation condition index[J]. Journal of Ecology, 2018, 37(4):1172-1180.

    [5]

    赵杰鹏, 张显峰, 廖春华, 等. 基于TVDI的大范围干旱区土壤水分遥感反演模型研究[J]. 遥感技术与应用, 2011, 26(6):742-750.

    [6]

    Zhao J P, Zhang X F, Liao C H, et al. TVDI based soil moisture retrieval from remotely sensed data over large arid areas[J]. Remote Sensing Technology and Application, 2011, 26(6):742-750.

    [7]

    沙莎, 郭铌, 李耀辉, 等. 温度植被干旱指数(TVDI)在陇东土壤水分监测中的适用性[J]. 中国沙漠, 2017, 37(1):132-139.

    [8]

    Sha S, Guo N, Li Y H, et al. Applicability of TVDI in monitoring drought in Longdong area of Gansu,China[J]. Journal of Desert Research, 2017, 37(1):132-139.

    [9]

    王美林, 姜群鸥, 邵雅琪, 等. 基于TVDI的玛曲土壤湿度时空变化及其影响因素[J]. 中国水土保持科学, 2019, 17(4):141-152.

    [10]

    Wang M L, Jiang Q O, Shao Y Q, et al. Spatio-temporal variation of soil moisture and analysis on its influencing factors in Maqu county based on TVDI[J]. Science of Soil and Water Conservation, 2019, 17(4):141-152.

    [11]

    刘英, 岳辉, 侯恩科. MODIS数据在陕西省干旱监测中的应用[J]. 国土资源遥感, 2019, 31(2):172-179.doi: 10.6046/gtzyyg.2019.02.24.

    [12]

    Liu Y, Yue H, Hou E K. Drought monitoring based on MODIS in Shaanxi[J]. Remote Sensing for Land and Resources, 2019, 31(2):172-179.doi: 10.6046/gtzyyg.2019.02.24.

    [13]

    黄振, 李万彪, 梁军. GPS遥感大气可降水量在降水天气过程分析中的应用[J]. 气象与环境学报, 2013, 29(4):31-36.

    [14]

    Huang Z, Li W B, Liang J. Application of precipitable water vapor from ground based GPS data to analysis of precipitation weather process[J]. Journal of Meteorology and Environment, 2013, 29(4):31-36.

    [15]

    金鑫, 施昆, 陈云波, 等. GPS可降水汽含量在强降雨过程中的特征分析[J]. 全球定位系统, 2018, 43(2):69-75.

    [16]

    Jin X, Shi K, Chen Y B, et al. Analysis on the characteristics of GPS precipitable water vapor during heavy rainfall[J]. GNSS World of China, 2018, 43(2):69-75.

    [17]

    刘盼, 刘智敏, 张明敏, 等. 不同IGS星历产品对地基GPS反演水汽的影响[J]. 测绘科学, 2018, 43(12):17-22.

    [18]

    Liu P, Liu Z M, Zhang M M, et al. Influence of different IGS ephemeris products on GPS of precipitable water vapor inversion[J]. Science of Surveying and Mapping, 2018, 43(12):17-22.

    [19]

    韩辉邦, 张小军, 张博越, 等. 柴达木盆地GPS大气可降水量精度检验及其变化特征[J]. 干旱气象, 2020, 38(1):50-57.

    [20]

    Han H B, Zhang X J, Zhang B Y, et al. Accuracy test of precipitable water vapor retrieved by GPS data and its variation characteristic in Qaidam Basin[J]. Journal of Arid Meteorology, 2020, 38(1):50-57.

    [21]

    F Alshawaf, F Zus, K Balidakis, et al. On the statistical significance of climatic trends estimated from GPS tropospheric time series[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(19):10967-10990.

    [22]

    Wang X M, Zhang K F, Wu S Q, et al. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño-Southern oscillation[J]. Remote Sensing of Environment, 2018, 2(16):1-12.

    [23]

    胡顺石, 黄春晓, 杨斌, 等. 自适应加权Savitzky-Golay滤波重构MODIS植被指数时间序列[J]. 测绘科学, 2020, 45(4):105-116.

    [24]

    Hu S S, Huang C X, Yang B, et al. Reconstruction of MODIS vegetation index time series by adaptive weighted Savitzky-Golay filter[J]. Science of Surveying and Mapping, 2020, 45(4):105-116.

    [25]

    吕凯, 吕成文, 乔天, 等. 地表温度合成方式对TVDI预测精度影响[J]. 遥感信息, 2019, 34(2):91-97.

    [26]

    Lyu K, Lyu C W, Qiao T, et al. Effect of LST synjournal methods on prediction accuracy of TVDI[J]. Remote Sensing Information, 2019, 34(2):91-97.

    [27]

    Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2):213-224.

    [28]

    Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(5):940-948.

    [29]

    Nemani R, L Pierce, S Running, et al. Developing satellite-derived estimates of surface moisture status[J]. Journal of Applied Meteorology and Climatology, 1993, 32(3):548-557.

    [30]

    Michael B, Steven B, Thomas A H, et al. GPS Meteorology:Remote sensing of atmospheric water vapor using the global positioning system[J]. Geophysical Research Letters, 1992, 97(D14):15787-15801.

    [31]

    李黎, 田莹, 袁志敏, 等. 暴雨期间GNSS遥感气象要素的时序变化[J]. 测绘科学, 2016, 41(10):82-87.

    [32]

    Li L, Tian Y, Yuan Z M, et al. Time series changes of GNSS remote sensing meteorological elements during rainstorms[J]. Science of Surveying and Mapping, 2016, 41(10):82-87.

    [33]

    侯建国, 杨成生, 张勤, 等. GPS可降水汽与MODIS可降水汽回归性分析[J]. 地理与地理信息科学, 2010, 26(2):42-45,113.

    [34]

    Hou J G, Yang C S, Zhang Q, et al. Regression analysis between GPS PWV and MODIS PWV[J]. Geography and Geo-Information Science, 2010, 26(2):42-45,113.

    [35]

    孙丽, 吴全, 裴志远, 等. 温度植被干旱指数(TVDI)与多因子关系研究[J]. 地理与地理信息科学, 2010, 26(2):31-34,88.

    [36]

    Sun L, Wu Q, Pei Z Y, et al. Study on the correlation between temperature vegetation dryness index (TVDI) and various factors[J]. Geography and Geo-Information Science, 2010, 26(2):31-34,88.

    [37]

    马雄伟, 赵庆志, 姚顽强, 等. PWV对全球气候变化的响应研究[J]. 测绘通报, 2019, 65(8):54-59.

    [38]

    Ma X W, Zhao Q Z, Yao W Q, et al. PWV response to global climate change[J]. Bulletin of Surveying and Mapping, 2019, 65(8):54-59.

    [39]

    齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J]. 遥感学报, 2003, 18(5):420-427,436.

    [40]

    Qi S H, Wang C Y, Niu Z. Evaluating soil moisture status in China using the temperature/vegetation dryness index (TVDI)[J]. Journal of Remote Sensing, 2003, 18(5):420-427,436.

    [41]

    曹影, 胡文庆, 颜培东. 基于温度植被干旱指数(TVDI)的云南干旱遥感监测[J]. 工程勘察, 2016, 44(1):69-73.

    [42]

    Cao Y, Hu W Q, Yan P D. Remote sensing monitoring of the drought based on temperature vegetation dryness index in Yunnan Province[J]. Geotechnical Investigation & Surveying, 2016, 44(1):69-73.

  • 加载中
计量
  • 文章访问数:  758
  • PDF下载数:  138
  • 施引文献:  0
出版历程
收稿日期:  2020-10-19
刊出日期:  2021-09-15

目录