Classification of remote sensing images based on multi-scale feature fusion using local binary patterns
-
摘要: 针对高光谱遥感图像分类问题,传统的特征提取方法常忽略其本征属性信息和图像的多尺度局部结构特性而使其获取的图像信息量较少,为改进这一缺陷,提出了一种多尺度灰度和纹理结构特征融合的方法模型(multi-scale gray and texture structure feature fusion,Ms_GTSFF)进行遥感图像特征提取。首先用多尺度方法提取图像不同尺度下的灰度属性特征,然后利用局部二进制模式的思想获得图像的局部纹理特征信息,同时利用多尺度还能够获取图像更大感受野的特征,接着利用得到的多尺度LBP直方图获取每种编码所对应的灰度属性信息,最后将上述得到的多尺度特征信息进行编码融合,构成了Ms_GTSFF特征提取模型,再连接多种机器学习分类器进行分类识别。以雄安新区(马蹄湾村)航空高光谱遥感影像作为测试数据集,对数据分块预处理后再进行特征提取与分类测试,最高获得了99.44%的分类准确率,在遥感图像分类上与传统方法的识别能力相比有很大的提升,验证了提出模型对于增强遥感图像的特征提取能力以及提高分类识别性能的有效性。Abstract: For the classification of remote sensing images, traditional feature extraction methods frequently ignore their intrinsic properties and the multi-scale local characteristics of the images. As a result, only a small amount of image information can be acquired. Given this, this study proposed a model of multi-scale gray level and texture feature fusion (Ms_GTSFF ) for the feature extraction of remote sensing images, and the extraction steps are as follows. Firstly, extract the gray-level features of the images at different scales. Then obtain the local texture features of the images using the local binary pattern (LBP) algorithm and meanwhile, obtain the image features of a larger receptive field using a multi-scale method. Afterward, obtain the gray-level attributes corresponding to various codes using the obtained multi-scale LBP histograms. Finally, code and fuse multi-scale feature information obtained from the above steps to constitute the Ms_GTSFF feature extraction model, to which multiple machine learning classifiers are connected for classification and recognition. Taking the aerial hyperspectral remote sensing images of Xiongan New Area (Matiwan Village) as the test dataset, the feature extraction and classification tests were performed following the data preprocessing by blocks. The classification accuracy was up to 99.44%, indicating a great improvement in the recognition capability compared with traditional methods. This verified the effectiveness of the proposed model in enhancing the feature extraction capability and improving the classification and reorganization performance of remote sensing images.
-
-
[1] 滕文秀, 王妮, 陈泰生, 等. 基于深度对抗域适应的高分辨率遥感影像跨域分类[J]. 激光与光电子学进展, 2019, 56(11):236-246.
[2] Teng W X, Wang N, Chen T S, et al. Deep adversarial domain adaptation method for cross-domain classification in high-resolution remote sensing images[J]. Laser & Optoelectronics Progress, 2019, 56(11):236-246.
[3] 董蕴雅, 张倩. 基于CNN的高分遥感影像深度语义特征提取研究综述[J]. 遥感技术与应用, 2019, 34(1):1-11.
[4] Dong Y Y, Zhang Q. A survey of depth semantic feature extraction of high-resolution remote sensing images based on CNN[J]. Remote Sensing Technology and Application, 2019, 34(1):1-11.
[5] Yang Y, Newsam S. Comparing SIFT descriptors and Gabor texture features for classification of remote sensed imagery[C]. 2008 15th IEEE International Conference on Image Processing,San Diego,CA, 2008:1852-1855.doi: 10.1109/ICIP.2008.4712139.
[6] Dos Santos J A, Penatti,O A B, Torres R D S. Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification[C]. VISAPP 2010-Proceedings of the International Conference on Computer Vision Theory and Applications, 2010(2):203-208.
[7] Chen C, Zhang B, Su H, et al. Land-use scene classification using multi-scale completed local binary patterns[J]. Signal,Image& Video Processing, 2016, 10(4):745-752.
[8] Luo B, Jiang S J, Zhang L P. Indexing of remote sensing images with different resolutions by multiple features[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(4):1899-1912.
[9] Lecun Y, Bottou L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[10] Zhong Y F, Fei F, Zhang L P. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery[J]. Journal of Applied Remote Sensing, 2016, 10(2):025006.
[11] Hu F, Xia G S, Hu J w, et al. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery[J]. Remote Sensing, 2015, 7(11):14680-14707.
[12] 许夙晖, 慕晓冬, 赵鹏, 等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报, 2016, 45(7):834-840.
[13] Xu S H, Mu X D, Zhao P, et al. Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):834-840.
[14] Li E, Xia J, Du P, et al. Integrating multilayer features of convolutional neural networks for remote sensing scene classification[J]. IEEE Transactions on Geosience & Remote Sensing, 2017(10):1-13.
[15] Wang G L, Fan B, Xiang S M, et al. Aggregating rich hierarchical features for scene classification in remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9):4104-4115.
[16] Ojala T, Pietikäinen M, Mäenpää T. Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24(7):971-987.doi: 10.1109/TPAMI.2002.1017623
[17] Lee S W, Li S Z. Face detection based on multi-block LBP representation[C]// Advances in Biometrics,International Conference,Icb,Seoul,Korea,August.DBLP, 2007:11-18.
[18] 王家臣, 李良晖, 杨胜利. 不同照度下煤矸图像灰度及纹理特征提取的实验研究[J]. 煤炭学报, 2018, 43(11):3051-3061.
[19] Wang J C, Li L H, Yang S L. Experimental study on gray and texture features extraction of coal and gangue image under different illuminance[J]. Journal of China Coal Society, 2018, 43(11):3051-3061.
[20] 岑奕, 张立福, 张霞, 等. 雄安新区马蹄湾村航空高光谱遥感影像分类数据集[J]. 遥感学报, 2020, 24(11):1299-1306.
[21] Cen Y, Zhang L F, Zhang X, et al. Aerial hyperspectral remote sensing classification dataset of Xiongan New Area (Matiwan Village)[J]. Journal of Remote Sensing (Chinese), 2020, 24(11):1299-1306.
-
计量
- 文章访问数: 931
- PDF下载数: 113
- 施引文献: 0