中国自然资源航空物探遥感中心主办
地质出版社出版

基于无人机高光谱遥感的河湖水环境探测

臧传凯, 沈芳, 杨正东. 2021. 基于无人机高光谱遥感的河湖水环境探测. 自然资源遥感, 33(3): 45-53. doi: 10.6046/zrzyyg.2020377
引用本文: 臧传凯, 沈芳, 杨正东. 2021. 基于无人机高光谱遥感的河湖水环境探测. 自然资源遥感, 33(3): 45-53. doi: 10.6046/zrzyyg.2020377
ZANG Chuankai, SHEN Fang, YANG Zhengdong, . 2021. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing. Remote Sensing for Natural Resources, 33(3): 45-53. doi: 10.6046/zrzyyg.2020377
Citation: ZANG Chuankai, SHEN Fang, YANG Zhengdong, . 2021. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing. Remote Sensing for Natural Resources, 33(3): 45-53. doi: 10.6046/zrzyyg.2020377

基于无人机高光谱遥感的河湖水环境探测

  • 基金项目:

    国家自然科学基金项目“近海浮游植物分类的高光谱遥感探测机理与方法研究”(42076187)

    国家重点研发计划政府间国际科技创新合作重点专项“水环境的高光谱及多源高分辨率光学遥感研究”

详细信息
    作者简介: 臧传凯(1996-),男,硕士研究生,研究方向为无人机高光谱水环境遥感。Email:51183904016@stu.ecnu.edu.cn。
  • 中图分类号: P231.1

Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing

  • 本研究以上海市崇明岛内陆水体为研究区,通过无人机高光谱遥感影像对水体颜色变化及疑似污染水体识别进行研究。首先,对无人机搭载的高光谱传感器探测获得的辐亮度信号,进行了遥感反射率标定,通过与现场观测对比,该标定方法准确度较高,各波段平均无偏绝对百分比误差的均值为13.34%,决定系数R2均值为0.83。进一步,利用河湖水体高光谱遥感反射率根据CIE-XYZ颜色标准和加权调和平均法反演了色相角(Hue angle)、表观波长(apparent visible wavelength,AVW),根据实测数据构建水质参数反演模型。通过设定色相角阈值对研究区水体颜色进行分类,结果表明: 崇明区在枯水期的河湖黄棕色异常水体较多,且需加强主要航运河流的水环境监管和治理。最后综合水体颜色参量和水质参数结果对河湖疑似污染水体进行识别和分析。研究表明: 无人机高光谱获得的高时空连续性的水体颜色参量和水质参数反演结果,在节约成本的同时为河湖水环境调查提供了可靠的技术支持。
  • 加载中
  • [1]

    陈文召, 李光明, 徐竟成, 等. 水环境遥感监测技术的应用研究进展[J]. 中国环境监测, 2008(3):6-11.

    [2]

    Chen W Z, Li G M, Xu J C, et al. Application of remote sensing technology in water environment monitoring[J]. Environmental Monitoring in China, 2008(3):6-11.

    [3]

    Dall’olmo G, Gitelson A A, Rundquist D C. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters[J]. Geophysical Research Letters, 2003, 30(18):1938-1942.

    [4]

    Nechard B, Ruddick K G, Park Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters[J]. Remote Sensing of Environment, 2010, 114(4):854-866.

    [5]

    Duan H, Ma R, Loiselle S A, et al. Optical characterization of black water blooms in eutrophic waters[J]. Science of The Total Environment, 2014, 482-483:174-183.

    [6]

    Wernand M R, Hommersom A, Woerd H J V D. MERIS-based ocean colour classification with the discrete Forel-Ule scale[J]. Ocean Science, 2013, 9(3):477-487.

    [7]

    CIE. Commission Internationale de l'Eclairage(CIE)Proceedings 1931[M]. Cambridge: Cambridge University Press, 1932.

    [8]

    Woerd H J V D, Wernand M R. Hue-angle product for low to medium spatial resolution optical satellite sensors[J]. Remote Sensing, 2018, 10(2):180-198.

    [9]

    Woerd H J V D, Wernand M R. True colour classification of natural waters with medium-spectral resolution satellites:SeaWiFS,MODIS,MERIS and OLCI[J]. Sensors (Basel), 2015, 15(10):25663-25680.

    [10]

    Wang S, Li J, Zhang B, et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index[J]. Remote Sensing of Environment, 2018, 217:444-460.

    [11]

    Wang S, Li J, Shen Q, et al. MODIS-Based radiometric color extraction and classification of inland water with the forel-ule scale:A case study of Lake Taihu[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2):907-918.

    [12]

    Zhao Y, Shen Q, Wang Q, et al. Recognition of water colour anomaly by using hue angle and Sentinel 2 image[J]. Remote Sensing, 2020, 12(4):716-737.

    [13]

    Vandermeulen R A, Mannino A, Craig S E, et al. 150 shades of green:Using the full spectrum of remote sensing reflectance to elucidate color shifts in the ocean[J]. Remote Sensing of Environment, 2020, 247:111900.

    [14]

    Zhang F, Li J, Shen Q, et al. Algorithms and schemes for Chlorophyll a estimation by remote sensing and optical classification for Turbid Lake Taihu,China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):350-364.

    [15]

    Tan J, Cherkauer K A, Chaubey I. Using hyperspectral data to quantify water-quality parameters in the Wabash River and its tributaries,Indiana[J]. International Journal of Remote Sensing, 2015, 36(21):5466-5484.

    [16]

    孙德勇, 李云梅, 王桥, 等. 利用高光谱数据估算太湖水体CDOM浓度的神经网络模型[J]. 武汉大学学报(信息科学版), 2009, 34(7):851-855.

    [17]

    Sun D Y, Li Y M, Wang Q, et al. Remote sensing retrieval of CDOM concentration in Lake Taihu with hyper-spectral data and neural network model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7):851-855.

    [18]

    张颖纯, 姜德刚, 李建华. 崇明岛“闸控型”河网水体富营养化特征及其影响因素[J]. 湖泊科学, 2013, 25(3):366-372.

    [19]

    Zhang Y C, Jiang D G, Li J H, et al. Characteristics of eutrophication and its affecting factors in gate-controlled river network system of Chongming Island[J]. Journal of Lake Sciences, 2013, 25(3):366-372.

    [20]

    朱浩, 刘兴国, 吴宗凡, 等. 上海市大莲湖生态修复区富营养化评价及氮磷平衡研究[J]. 水土保持通报, 2013, 33(6):157-160.

    [21]

    Zhu H, Liu X G, Wu Z F, et al. Assessment of eutrophication and N,P balance in Dalian Lake ecological restoration region of Shanghai City[J]. Bulletin of Soil and Water Conservation, 2013, 33(6):157-160.

    [22]

    唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004(1):37-44.

    [23]

    Tang J W, Tian G L, Wang X Y, et al. The Methods of water spectra measurement and analysis I:Above-water method[J]. Journal of Remote Sensing, 2004(1):37-44.

    [24]

    国家环保总局. HJ/T 91—2002地表水和污水监测技术规范[S]. 北京: 中国环境科学出版社, 2002.

    [25]

    National Environmental Protection Agency. HJ/T 91—2002 Environmental quality standards for surface water[S]. Beijing: China Environmental Press, 2002

    [26]

    Porra R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b[J]. Photosynth Res, 2002, 73(1-3):149-156.

    [27]

    Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (Yellow Substance) in the UV and visible domains[J]. Limnology and Oceanography, 1981, 26(1):43-53.

    [28]

    国家环境保护局. HJ 636—2012水质总氮的测定碱性过硫酸钾消解紫外分光光度法[S]. 北京: 中国环境科学出版社, 2012.

    [29]

    National Environmental Protection Agency. HJ 636—2012 Water quality-determination of total nitrogen-alkaline potassium persulfate digestion-ultraviolet spectrophotometric method[S]. Beijing: China Environmental Press, 2012.

    [30]

    国家环境保护总局. GB-11893—89水质总磷的测定钼酸铵分光光度法[S]. 北京: 中国环境科学出版社, 1990.

    [31]

    National Environmental Protection Agency. GB-11893—89 Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method[S]. Beijing: China Environmental Press, 1990.

    [32]

    国家环保总局. GB 11901—89水质悬浮物的测定重量法[S]. 北京: 中国标准出版社, 1990.

    [33]

    National Environmental Protection Agency. GB-11901—89 Water quality-determination of suspended matter gravimetric method [S]. Beijing: China Environmental Press. 1990.

    [34]

    勾志阳, 晏磊, 陈伟, 等. 无人机高光谱成像仪场地绝对辐射定标及验证分析[J]. 光谱学与光谱分析, 2012, 32(2):430-434.

    [35]

    Gou Z Y, Yan L, Chen W, et al. In-Flight Absolute Radiometric calibration of UAV hyperspectral camera and its validation analysis[J]. Spectroscpy and Spectral Analysis, 2012, 32(2):430-434.

    [36]

    Slater P N, Biggar S F, Holm R G, et al. Reflectance-and radiance-based methods for the in.flight absolute calibration of multispectral sensors[J]. Remote Sensing of Environment, 1987(22):11-37.

    [37]

    Shang S, Lee Z, Lin G, et al. Sensing an intense phytoplankton bloom in the western Taiwan Strait from radiometric measurements on a UAV[J]. Remote Sensing of Environment, 2017, 198:85-94.

    [38]

    Mobley C D. Light and water:Radiative transfer in natural waters[M]. USA: Academic Press, 1994.

    [39]

    Yang J, Liu C, Shu R, et al. The extraction of urban surface water from hyperspectral data based on spectral indices[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(11):1749-1759.

    [40]

    刘翔. 基于光谱维变换的高光谱图像目标探测研究[D]. 北京:中国科学院研究生院(遥感应用研究所), 2008.

    [41]

    Liu X. Target detection on hyperspectral imagery based on transformation of spectral dimensions[D]. Beijing:Institute of Remote Sensing Applications Chinese Academy of Sciences, 2008.

    [42]

    Brigham E O, Morrow E R. The fast fourier transform[J]. Acoustics Speech&Signal Processing IEEE Transactions on, 2007, 4(12):63-70.

    [43]

    Landsat 8. Data Users Handbook Version 2.0.Department of the Interior[R]. Sioux Falls,South Dakota:USGS, 2016.

    [44]

    Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):65-74.

    [45]

    Gao B C. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers[J]. Remote Sensing of Environment, 1993, 43(1):23-33.

    [46]

    王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002(5):47-49.

    [47]

    Wang M C, Liu X Q, Zhang J H. Evaluate method and classification standard on lake eutrophication[J]. China Environmental Monitoring Centre, 2002(5):47-49.

    [48]

    国家环境保护总局. GB 3838—2002地表水环境质量标准[S]. 北京: 中国环境科学出版社, 2002.

    [49]

    National Environmental Protection Agency. GB 3838—2002 Environmental quality standards for surface water[S]. Beijing: China Environment Press. 2002.

  • 加载中
计量
  • 文章访问数:  1109
  • PDF下载数:  129
  • 施引文献:  0
出版历程
收稿日期:  2020-12-01
刊出日期:  2021-09-15

目录